\/

Introducing the
HTML5 Web
Speech API

Your Practical Introduction to Adding
Browser-Based Speech (apabilities to
your Websites and Online Applications

Alex Libby

ApPress’

http://www.allitebooks.org

Introducing the HTML5
Web Speech API

Your Practical Introduction
to Adding Browser-Based
Speech Capabilities to your
Websites and Online
Applications

Alex Libby

Apress’

vww . allitebooks.con

http://www.allitebooks.org

Introducing the HTML5 Web Speech API

Alex Libby
Rugby, UK

ISBN-13 (pbk): 978-1-4842-5734-0 ISBN-13 (electronic): 978-1-4842-5735-7
https://doi.org/10.1007/978-1-4842-5735-7

Copyright © 2020 by Alex Libby

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan

Development Editor: James Markham

Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

1 New York Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.
apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484257340. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

vww . allitebooks.con

https://doi.org/10.1007/978-1-4842-5735-7
http://www.allitebooks.org

This is dedicated to my family, with thanks for their love
and support while writing this book.

vww . allitebooks.con

http://www.allitebooks.org

Table of Contents

About the AUthOrccoviiiemmmmmmssnsnmmsssssssssss s sansnsssssnns XV
About the Technical REVIEWETccuusserrsssnsmsssnsssssnsssssnsssssanssssnsssssanss Xvii
Acknowledgmentsccccuuseemmmmsssssnmmssssssssesssssnssessssssnssssssnnsssssssnnnnsssss Xix
INtroductionccuseemmsssnnmsssnnmsssnnssssnnssssanssssansessannesssnnssssnnssssnnsnssnnnnsnns Xxi
Chapter 1: Getting Started...........coormmmmmmmnnnnnnnnssessn s —————— 1
INtroducing the APIS ... 1
Setting up our development environment...........ccccoevvrvrrrrerrersersensensenens 2
Implementing our first examplescccoeeeeececcse e 5
Reading back text as Speech ... 5
Converting Speech to textccceviererriiennsesesrssesse s 12
Allowing access to the microphone............cccvvvvrvrvrsncs s 17
Setting access: An alternative method...........cccecevvvvvrvnvrsensessensennen, 20
Allowing for browSer SUPPOIt.........ccueeerersersersessesssssssssssessssssssssssssssnsnns 23
Understanding Security CONCEINScccoceererrerresressessesssssssssssssssssnens 26
1T 1 SRR 28
Chapter 2: Exploring the APIs in More Detailcccenrnssnnnnnnnsssnnnnn 31
Understanding the APl terminology.........ccccveevrrrrsnsnssessesses e e e 31
Exploring the Speech Synthesis API...........ccoreeerecccsce e 32
Breaking apart the APL............cocrcrcrcrcr e 32

v

vww . allitebooks.con

http://www.allitebooks.org

TABLE OF CONTENTS

Improving our SpeechSynthesis demo..........ccccecevvvrvrrrrere e 34
DisSSEeCting ouUr COUE........cccvrerrerrerserer e 39
Exploring the Speech Recognition APIccceeverrercrcercnces e 39
Breaking apart the APL...........cocoiieercrercr s 40
Updating our SpeechRecognition demo..........cccceveeverernneenenseeseesessensenns 42
Understanding the Code........ccocvcrcrcrcscessrscs e 46
Creating a more practical exampleccceeveeerererererese e 46
Exploring the code in detail............cooeeviereniniennsenesnese s 52
GoING MUIEHINGUALccveeeeeeeeere e r e sn e sae s 53
Exploring support for [anguagescccvevereeesensesssssssssesss s sseseenas 54
Setting a custom 1aNQUAQGEcccceeeeeeererrererre e 56
Breaking apart our COde..........cooveereercercesser s 61
The difference between language and dialect...........c.ccccoeervivrernnncne 61
Making use of grammar ODJECTScccvrrvrrrrer s 62
SUMMANY ...ttt ssesresr s s e s s sr s snssaesn s snesn e snennenrnnnnsnennennnns 63
Chapter 3: Supporting Mobile DevViCescccrrusssmnssrsssssnsnssssssnnnsssssnnnns 65
Supporting the Speech Synthesis API ... 66
Breaking down the NUMDErS........cccvvvvrvrrr s 66
Supporting the Speech Recognition API............ccoririeeriennscrecnsesnenennns 68
Understanding the numbers.........ccocvcveecececscsce e 69

A couple of PrereqUISItESc.ccveveerrerrersesssrss e ses e snesnennens 71
Checking support for the APIS.........cccoeeererrrcrerr e 72
Determining space available............cccooverrrcrsnsssen s 74
Setting available space using Code.........ccccoreeererereresenese e 75
Configuring Chrome’s Responsive Mode...........ccooeeeeeeeeeneseesnnnennnns 75

TABLE OF CONTENTS

Implementing the Speech Synthesis APL...........cccocvvrverrrerere e 77
Adapting design for mobilec.ccoererercrcscr s 78
Implementing the Speech Recognition APIcccceeeeeeeeerecescensencennns 82
Adapting for Mobile USE........c.ccevrrrrernseresrssesre e 83
Putting it together: A practical example..........cccccevrvrvrrcncrccnceccr e, 85
Dissecting the code in detail.........c.ccocvercrircrcr e 87
Working with mobile: An epilog.......c.cccereerrerrersersessenses e seeeas 89
31111 P2 o 2SR 90
Chapter 4: Combining the APIs: Building a Chatbotccccesneenins 91
Why use a chathot?..........ccocrercrc e 91
Things to consider when building a chatbotccoviniiiiennncne 92
Downsides t0 DOtS........cccocereeiicnnirerr 93
Different types of chatbots.........c.ccccrvrvrrrvrcrcr 94
Setting the background...........ccceveerrrerniesesse e 96
Keeping things iN SCOPE.......cccveereerrerierier s s e s e sne e sne e e 97
Architecting Our dEMO.........coceeerererenseresese e sns e snesn e 97
Alternative tools available............cooeercrnreree e 99
Adding text editor SUPPOM........ccceeeeeerererre e snenne e 100
Getting toOIS iN PIACE.......ccceeeeerecrece e e 101
Building our chathot..........c.ccoccvvrirrnirrrrr e 103
Configuring our chathot.........ccooverererec e 107
Exploring the code in detail..........ccocvvrerercrcrce e 114
Dissecting our HTML Markupccocveerernernensensensesssssesssssesssssssssnsenns 115
Pulling apart script.js: The Web Speech API.........cocvvvvrvvcrcrceninnne 115

vii

TABLE OF CONTENTS

Understanding how our bot is configured..........ccoevrvrnirnncrncniennenne 116
Exploring how RiveScript works: A summary..........cceeevvvernrererenenns 117
Dissecting the brain.rive file in detail...........c.ccocoverercrcrcrceceeceeee 118

Taking things fUIhEr ... 120

Adding language SUPPOItcceccervrrrerierrerree e sne e sne s 121
Updating our demo.........c.ccecreersersensensensesses s sesses e sns e s snssnennnns 122
Dissecting the COde..........ccuorvriercercr s 128

SUMMAIY ...t r s ae s nnn e 129

Chapter 5: Project: Leaving Review Feedbackc.ccccunrnsssnnnnnsssnnns 131

Setting the SCENEccecvvv e s 131
Keeping things iN SCOPE.......ccccveereerrersessessesses s sessesssssessessessnssnssssnnnns 132

Architecting our demo..........ccceeeeerererere e 133

Building our review panelcccocvvrvnnensensensensessesses s ses e seeens 133

Breaking apart the code in detailcccoorerercrcsce e 138
Exploring the HTML ..ot 138
Exploring the JavaScriptcccvervrinsnss s seeens 139

Adding it t0 @ Product PAge.......cceereereerrrrrr s 141

Adding 1anguage SUPPOIccoeeeeerererressessessessessssssssesssssessssssssssssssens 145
Updating the demo........ccocvcrcrcrcrcr e 147
Dissecting the COde..........ccucrvrvrrercrcr e 151

Leaving reviews: A POSESCHPL.......cccveverererrre e ses e seneas 152

Taking things further ... 154

11111 P2 S SS 155

Chapter 6: Project: Building AleXa.......cccusseemmmmssssnnnssssssnssssssssssnsssssnns 157

Setting the SCENEccvvcecerrerrer e s 158

Architecting our demo.........ccceeeeeeerere e snesnenne e 158

viii

TABLE OF CONTENTS

Building our demo.........ccoccerercirrrner e 160
Creating the Markupccccccvceeririennicsesne s 160
Making our demo come t0 lifec.ccocvercersercnses s 162

Breaking apart the Code.........cccoviernierenniennsesessse s 169
Solving a styling problem.........ccccevererirnnnne e 171

Adding NEW fEALUIEScoeererrerrerrerre e e e e sse e sne e snesnesnesnesnennnnens 174
Exploring the code in detail..........ccocvererercrcncr s 177

Adding support for different languagescceevvernreresnsesnsnssesenenns 178
Breaking down the COdEeccovvververrerrerrer s 182

IMProving PerformMance..........ccceeeeeerresessessessessessessesssssesasssessssssssssssnnes 183

Taking things further ... 185

31111 P S 188

Chapter 7: Project: Finding a Restaurantcccccnseemnnnsssnnnnnnssnnns 189

Setting the SCENE ..o s 189

Setting the parameters of our Project..........ccevevervrcescssscesses s 190

Setting expectations..........ccvvvrvrnrrr s ———— 192

Determining the busingss l0giC........c.ccccverercercercessr s 193

Architecting Our ProjeCt.........coveereriierrseress e 193

Setting up the initial markup and stylingccocvvrvrvrvrrnsrrer s 195

Initializing Our ProjECt.......ccoeeeeeeeee e 196
Making our Dot talKccocrieriercerrerer e 198
Getting the restaurant details...........ccocceeerienninenncecesereens 203
Adding speech input capabilitiesccccvvrrrvrirrnrn s 208
Configuring the Dot........cc o, 211
Converting currencies into US dollars..........ccoeevervreeneenensensensensensenns 214

ix

TABLE OF CONTENTS

Testing the demO........ccceeercrrrce s 216
Dissecting our code in detail...........ccocvvreersrcrcencr e 219
Dissecting our HTML Markupccocvereernersessensensessssses s sesssssssssnsenns 220
Breaking apart the main script file.........ccccoervrvrrrcrcrcrcrcr e 220
Exploring the bot configuration fileccccvvrvrvrvnnnsr s 224
Taking things further ... 225
Formatting telephone numbers..........ccocvcvercecrcscecece s 227
Adding location-based facilities.........c..cuerrrrrsrsersersssersr e 228
Displaying more details about restaurantsc..coceeviererercrennenn 230
1111 P2 S 231
Chapter 8: Project: Finding and Playing Music.......cc.scccummmsssnnnnnnssanns 233
Setting the background to our project ... 234
WHY SPOTIY? ..ot 236
Architecting our demo.........cccocevrirrcrrr - 237
Authorizing OUr dBMO........coeeeeeceerere e srenne e 238
Choosing @ MEthodccceeeeererere e 238
The implications of using our chosen methodccccoevvrvercnrnee 239
Constraints of using this method ... 242
Setting up PrereqUISIteS........coovvreeriernsre s 243
Creating the frameworKcccceeeeecere e e 246
Getting authorization from Spotifyccccvceeviirennsenesrerseeeeiens 250
Breaking apart the Code.........ccovvrrrrerinrnsirrr e 255
Streaming content from Spotifycccecvieririennc s 256
Understanding the Code.........cccvercrcrcsces s 264
TalKing 10 SPOtify......ccccoiieriirerrers s 265
Exploring the code in detail..........ccccvvrvrvrrrnn s 271

TABLE OF CONTENTS

Taking things fUIher ... 272
11111 11T SRS 273
Chapter 9: Project: Automating the Purchase Process.........ccccuuueuns 275
Setting the SCENE ... s 275
Keeping things in SCOPE.......ccecrverirrerir s 277
Architecting the project.........oooeeeeeeececece s 278
Preparing our Shopping Cart..........ccccvcvvrvrrnnnsnsessrses s seeeas 279
Setting expectations...........cccevrerniennnne s —— 280
Adding speech capabilitiesccoceeerererererere s 281
Inserting the markup for our microphoneccoevevvrvercessnsennnnns 282
Altering our product Markupcccvvrvrrensnsnsn s 284
Adding the script functionalitycccccvvrrrrrvrrr s 288
An alternative method of checking outcccceeeeececececececeeceeceenns 296
Breaking apart the Code..........ccvvrerircrnr s 301
Reducing the functionality: A note.........ccccevrererrrcrcrcrrrcer e 302
Exploring the pitfalls of our SOIULIONccverververrrrr e 303
Taking things fUrther ... 306
SUMMAIY ...t sn e 308
Appendix: APl Referenceccusseemmmsssssnssssssssnnssssssssnssssssssnsssssssnnnsnss 309
API Reference: SpeechRecognitioncccceevvevererensessessessessessessensenns 309
AP INTEIfACEScoviercireret s 310
CONSTTUCTO ...t 310
PrOPEILIES.....coceecercer st nnenenn 311
MEENOUS ..ot ————— 312
T 1 313

TABLE OF CONTENTS

API Reference: SpeechRecognitionEventccccocevvveevevensensensensennnnns 314
PrOPEItIES.....ccceeerer s nn e nn e nn 314
API Reference: SpeechRecognitionErrorcccceeeeeeeeeseeseesessessensensenns 315
PrOPEILIES.....ciererer sttt sn e nnen e 315
API Reference: SpeechRecognitionResult............ccoeevvveerererrensensensennnnns 315
PrOPEItIES.....ccce et sn e nn e nn 315
MELNOUSceeercerer e 316
API Reference: SpeechRecognitionResultListcccocveeviernieicnnnnene 316
o 0] 01 o (T 317
MELNOMSceeererrrerer s sn e nnnnn e 317
API Reference: SpeechRecognitionAlternative..........ccccceeeeeeeeeecerseninns 317
PrOPEILIES.....cee et nr e 318
API Reference: SpeechSynthesis.........ccovvvvervrrnennnsse s 318
L o B0 2T 318
PrOPEILIES.....ccce et nn e nn 319
MELNOUSceeererir e nns 320
EVENTS.....co e 321
API Reference: SpeechSynthesisUtterance..........ccocvevvevvvvvesensensennnnns 321
CONSTTUCTON......cceeercceecer e 321
Properties......cccv i 322
EVENTS.....cc e 322
API Reference: SpeechSynthesisErrorEvent............ccocoveenicnnnnicnnnnene 323
PrOPEILIES.....cieeer sttt sn e n e nn e 323
MELNOMS ..o e 324

xii

TABLE OF CONTENTS

API Reference: SpeechSynthesSiSEVENt...........cccccvevvevrveennnersessensenseninnns 324
PrOPEILIES.... e sn e nn e nn 324
MEENOUS ... ——————— 325

APl Reference: SpeechSynthesisVoice..........c.ccveerernseresnssesssesesensens 325
o 0] 01 o (T 326

APl Reference: SpeeChGrammarccccoeenveveseniesnsesssensessssesesesens 326
CONSTTUCTO ...t 327
PrOPEILIES.... et nn e nn 327

API Reference: SpeechGrammarList..........cccocevvvievinvesvinseenienseesenseennns 328
0] 151 1T (0 PP 328
PrOPEILIES.....cce e nn e nn 328
MEENOUS ... ———————— 329

INA@X..ueeeiiiensssansssnnnssssnsssssnssssanssssan s ssssnnssssnnsnssnnnnssnnsnssnnsnssnnnnssnnnnnasn 331

xiii

About the Author

Alex Libby is a front-end engineer and seasoned computer book author
who hails from England. His passion for all things open source dates

back to the days of his degree studies, where he first came across web
development, and he has been hooked ever since. His daily work involves
extensive use of JavaScript, HTML, and CSS to manipulate existing web site
content. Alex enjoys tinkering with different open source libraries to see
how they work. He has spent a stint maintaining the jQuery Tools library
and enjoys writing about open source technologies, principally for front-
end UI development.

About the Technical Reviewer

Kenneth Fukizi is a software engineer, architect, and consultant with
experience in coding on different platforms internationally. Prior to
dedicated software development, he worked as a lecturer for a year and
was then head of IT in different organizations. He has domain experience
working with technology for companies in a wide variety of sectors. When
he’s not working, he likes reading up on emerging technologies and strives
to be an active member of the software community.

xvii

Acknowledgments

Writing a book can be a long but rewarding process; it is not possible to
complete it without the help of other people. I would like to offer a huge
thanks to my editors - in particular, Nancy Chen and Louise Corrigan.
My thanks also to Kenneth Fukizi as my technical reviewer and James
Markham for his help during the process. All four have made writing this
book a painless and enjoyable process, even with the edits!

My thanks also to my family for being understanding and supporting
me while writing - I frequently spent lots of late nights writing alone, so
their words of encouragement have been a real help in getting past those
bumps in the road and producing the finished book that you now hold in
your hands.

Xix

Introduction

Introducing the HTML5 Web Speech API is for people who want to quickly
add speech capabilities natively in the browser, without the need for extra
libraries or costly subscription to speech service providers.

First introduced by the W3C in 2012, the HTML5 Web Speech API
consists of two APIs for speech recognition and synthesis. It is designed to
add speech capabilities natively in the browser, using a clean, consistent
API that allows us developers to focus on providing a next-level interface
and superior user experience, without having to worry about the
mechanics of how the API operates.

Over the course of this book, I'll take you on a journey through using
the API, showing you how easy it is to quickly add speech capabilities to
your projects, with the minimum of fuss. We’ll focus on topics such as
making our browsers recite anything from a simple phrase to performing
actions based on verbal commands, with lots of simple exercises to help
develop your skills with this API.

Introducing the HTML5 Web Speech API is for the web site developer
who is keen to learn how to quickly add in speech capabilities to any
project, without the need for extra libraries or costly services. It’s perfect
for those who work in Agile development, where time is of the essence and
developers can produce reusable code that makes use of the API within
their chosen framework or development process.

CHAPTER 1

Getting Started

Introducing the APIs

“Hey Alexa, what time is it...?"”

In an age of smart assistant (SA) devices, I'll bet that those words will be
uttered dozens of times a day worldwide - it does not matter where; smart
assistants have become immensely popular. Indeed, Juniper Research has
forecasted that the number of smart assistants will triple from 2.5 billion
in use at the end of 2018 to 8 billion by 2023. Just imagine - changing

TV channels by voice (already possible, and which alone is expected to
increase 120% over the next five years) or simply doing mundane tasks like
reordering goods from the likes of Amazon.

But I digress. Smart assistants are great, but what if we could use them
to control functionality in our online web site or application? “How?” I hear
you ask. Well, let me introduce the HTML5 Speech API; it uses the same
principle as smart assistants, to turn speech into text and vice versa. It’s
available now for use in the browser, albeit still somewhat experimental.

Initially created back in 2012, but only really coming into full use now,
this experimental API can be used to perform all manner of different tasks
by the power of voice. How about using it to add products to a shopping
cart and pay for them - all done remotely by voice? Adding in speech
capabilities opens up some real possibilities for us. Over the course of this

© Alex Libby 2020 1
A. Libby, Introducing the HTML5 Web Speech API,
https://doi.org/10.1007/978-1-4842-5735-7_1

CHAPTER 1 GETTING STARTED

book, we’ll explore a handful of these in detail, to show you how we can
put this API to good use. Before we do so, there is a little housekeeping
we must take care of first. Let’s cover this off now, before we continue our
journey through this API.

If you would like to get into the detail of how this API has been
constructed and the standards that browser vendors must follow,
then take a look at the W3C guidelines for this APl at https://
wicg.github.io/speech-api/. Beware — it makes for very dry
reading!

Setting up our development environment

I'm pretty sure that no one likes admin, but in this instance, there are a
couple of tasks we have to perform before we can use the API.
Don’t worry - they are straightforward. This is what we need to do:

o The API only works in a secure HTTPS environment
(yes, don’t even try running it under HTTP - it doesn’t
work) - this means we need to have some secure web
space we can use for the purposes of our demos. There
are several ways to achieve this:

o The simplest is to use CodePen (https://www.
codepen.io) - you will need to create an account
to save work, but it is free to sign up if you don't
already have an account you can use.

e Do you have any web space available for another
project, which could be used temporarily? As long
as it can be secured under HTTPS, then this will

work for our demos.

https://wicg.github.io/speech-api/
https://wicg.github.io/speech-api/
https://www.codepen.io
https://www.codepen.io

CHAPTER 1 GETTING STARTED

o Ifyouhappen to be a developer who uses an MS
tech stack, you can create an ASP.Net Core web
application, with “Configure for HTTPS” selected,
and click OK when prompted to trust the self-
signed certificate, upon running the application.
This will work fine for the demos throughout this
book.

¢ You can always try running a local web server - there
are dozens available online. My personal favorite is
MAMP PRO, available from https://www.mamp. info.
It's a paid-for option that runs on Windows and Mac;
it makes generating the SSL certificates we need to use
a cinch. Alternatively, if you have the likes of Node.
js installed, then you can use one such as local web
server (https://github.com/lwsjs/local-web-
server), or create your own if you prefer. You will need
to create a certificate for it and add it to your certificate
store - a handy method for creating the certificate is
outlined at https://bit.1ly/30RjADO.

The next important task is to avail yourself of a suitable
microphone - after all, we clearly won’t get very far
without one! You may already have one; if not, pretty
much any microphone will work fine. My personal
preference is to use a microphone/headset combo, as
you might for talking over Skype. You should be able to
pick up a relatively inexpensive one via Amazon or your
local audio store.

https://www.mamp.info
https://github.com/lwsjs/local-web-server
https://github.com/lwsjs/local-web-server
https://bit.ly/30RjAD0

CHAPTER 1 GETTING STARTED

A word of note If you are a laptop user, then you can use any
microphone that is built-in to your laptop. The drawback is that
reception won’t be so good — you might find yourself having to lean
forward an awful lot for the best reception!

o For all of our demos, we'll use a central project folder -
for the purposes of this book, I'll assume you've created
one called speech and that it is stored at the root of
your C: drive. The exact location is not critical; if you've
chosen a different location, then you will need to adjust
the location accordingly when we come to complete
the demos.

Excellent! With that admin now out of the way, we can focus on the
interesting stuffl The HTML5 Speech API (or “the API”) comes in two parts:
The first part is the SpeechSynthesis API, which takes care of reciting back
any given text as speech. Second, in comparison - and to coin a phrase -
the SpeechRecognition API does pretty much what it says in the name.
We can say a phrase, and provided it matches preconfigured text it can
recognize, it will perform any number of tasks that we assign on receipt of
that phrase.

We could dive into how they work, but I know you're itching to get
stuck in, right? Absolutely. So without further ado, let’s run through two
quick demos, so you get a flavor for how the APTI works before we use it in
projects later in this book.

Don’t worry though about what it all means - we will absolutely
explore the code in detail after each exercise! We’ll look at both in turn,
starting first with the SpeechSynthesis API.

CHAPTER 1 GETTING STARTED

Implementing our first examples

Although both APIs require a bit of configuration to make them work,
they are relatively easy to set up; neither requires the use of any specific
frameworks or external libraries for basic operation.

To see what I mean, I've put together two quick demos using
CodePen - they demonstrate the basics of what is needed to get started
and will form code that we will use in projects later in this book. Let’s take
alook at each, in turn, starting with reading back text as speech, using the
SpeechSynthesis API.

Reading back text as speech

Our first exercise will keep things simple and make use of CodePen to
host our code; for this, you will need to create an account if you want to
save your work for future reference. If you've not used CodePen before,
then don’t worry - it’s free to sign up! It’s a great way to get started with the
API. We will move to using something more local in subsequent demos.

All of the code used in examples throughout this book is available in
the code download that accompanies this book. We will use a mix
of ECMAScript 2015 and vanilla JavaScript in most demos; you may
need to adjust if you want to use a newer version of ECMAScript.

CHAPTER 1

GETTING STARTED

READING BACK TEXT

Assuming you’ve signed up and now have a CodePen account you can use,
let’s make a start on creating our first example:

1.

First, go ahead and fire up your browser, then navigate to
https://codepen.io, and sign in with your account details.
Once done, click Pen on the left to create our demo.

We need to add in the markup for this demo — for this, go ahead
and add the following code into the HTML window:

<link href="https://fonts.googleapis.com/css?family=0Open+
Sans&display=swap" rel="stylesheet">

<div id="page-wrapper">
<h2>Introducing HTML5 Speech API: Reading Text back as
Speech</h2>
<p id="msg"></p>
<input type="text" name="speech-msg" id="speech-msg">
<div class="option">
<label for="voice">Voice</label>
<select name="voice" id="voice"></select>
<button id="speak">Speak</button>
</div>
</div>

Our demo will look very ordinary if we run it now — let alone

the fact that it won’t actually work as expected! We can easily
fix this. Let’s first add in some rudimentary styles to make our
demo more presentable. There are a few styles to add in, so we
will do it block by block. Leave a line between each block, when
you add it into the demo:

*, *:before, *:after { box-sizing: border-box; }

https://codepen.io

CHAPTER 1 GETTING STARTED

html { font-family: 'Open Sans', sans-serif; font-size:
100%; }

#page-wrapper { width: 640px; background: #ffffff;
padding: 16px; margin: 32px auto; border-top: 5px solid
#9d9d9d; box-shadow: 0 2px 10px rgba(0,0,0,0.8); }

h2 { margin-top: 0; }

We need to add in some styles to indicate whether our browser
supports the API:

#msg { font-size: 14px; line-height: 22px; }
#msg.not-supported strong { color: #cc0000; }

#msg > span { font-size: 24px; vertical-align: bottom; }
#msg > span.ok { color: #00ff00; }

#msg > span.notok { color: #ff0000; }

Next up are the styles for the voice drop-down:
#voice { margin: 0 70px O -70px; vertical-align: super; }

For the API to have something it can convert to speech, we
need to have a way to enter text. For this, add in the following
style rules:

input[type="text"] { width: 100%; padding: 8px;
font-size: 19px;

border-radius: 3px; border: 1px solid #d9d9d9;
box-shadow: 0 2px 3px rgba(0,0,0,0.1) inset; }

label { display: inline-block; float: left; width: 150px; }
.option { margin: 16px 0; }

The last element to style is the Speak button at the bottom-right
corner of our demo:

CHAPTER 1

GETTING STARTED

button { display: inline-block; border-radius: 3px;
border: none; font-size: 14px; padding: 8px 12px;
background: #dcdcdc;

border-bottom: 2px solid #9d9d9d; color: #000000;
-webkit-font-smoothing: antialiased; font-weight: bold;
margin: 0; width: 20%; text-align: center; }

button:hover, button:focus { opacity: 0.75; cursor:
pointer; }

button:active { opacity: 1; box-shadow: 0 -3px 10px
rgba(o, 0, 0, 0.1) inset; }

With the styles in place, we can now turn our attention to
adding the glue to make this work. | don’t mean that literally,
but in a figurative sense! All of the code we need to add goes in
the JS window of our CodePen; we start with a check to see if
our browser supports the API:

var supportMsg = document.getElementById('msg');

if ('speechSynthesis' in window) {
supportMsg.innerHTML = '☑
 Your browser supports speech
synthesis.';

} else {
supportMsg.innerHTML = '☒</
span> Sorry your browser does not support</
strong> speech synthesis.';
supportMsg.classList.add(' not-supported');

}

Next up, we define three variables to store references to
elements in our demo:

var button = document.getElementById('speak');
var speechMsgInput = document.getElementById('speech-msg');
var voiceSelect = document.getElementById('voice');

CHAPTER 1 GETTING STARTED

10. When using the API, we can relay speech back using a variety
of different voices — we need to load these into our demo
before we can use them. For this, go ahead and drop in the
following lines:

function loadVoices() {
var voices = speechSynthesis.getVoices();

voices.forEach(function(voice, i) {
var option = document.createElement('option');
option.value = voice.name;
option.innerHTML = voice.name;
voiceSelect.appendChild(option);
1);
}

loadVoices();

window.speechSynthesis.onvoiceschanged = function(e) {
loadVoices();

};

11. We come to the real meat of our demo — this is where we see
the text we add be turned into speech! For this, leave a line
after the previous block, and add in the following code:

function speak(text) {
var msg = new SpeechSynthesisUtterance();
msg.text = text;

if (voiceSelect.value) {
msg.voice = speechSynthesis.getVoices()
.filter(function(voice) {
return voice.name == voiceSelect.value;
Hlol;
}

window. speechSynthesis.speak(msg);

}

CHAPTER 1 GETTING STARTED

12. We’re almost there. The last step is to add in an event handler
that fires off the conversion from text to speech when we hit
the Speak button:

button.addEventListener('click', function(e) {
if (speechMsgInput.value.length > 0) {
speak(speechMsgInput.value);

}
};

13. Go ahead and save your work. If all is well, we should see
something akin to the screenshot shown in Figure 1-1.

Introducing HTMLS5 Speech API: Reading Text back as
Speech

[V/] Your browser supports speech synthesis.

Voice Microsoft Hazel Desktop - English (Great Britain) ¥ Speak

Figure 1-1. Our completed text-to-speech demo

Try then typing in some text and hit the Speech button. If all is working as
expected, then you will hear your words recited back to you. If you choose
a voice from the drop-down, you will hear your words spoken back with
an accent; depending on what you type, you will get some very interesting
results!

10

CHAPTER 1 GETTING STARTED

A completed version of this demo can be found in the code download
that accompanies this book — it’s in the readingback folder.

At this stage, we now have the basic setup in place to allow our browser
to read back any text we desire - granted it might still sound a little robotic.
However, this is to be expected when working with an API that is still
somewhat experimental!

This aside, I'll bet there are two questions on your mind: How does this
API function? And - more to the point - is it still safe to use, even though
it is still technically an unofficial API? Don’t worry - the answers to these
questions and more will be revealed later in this chapter. Let us first start
with exploring how our demo works in more detail.

Understanding what happened

If we take a closer look at our code, you might be forgiven for thinking it
looks a little complex - in reality though, it is very straightforward.

We start with some simple HTML markup and styling, to display an
input box on the screen for the content to be replayed. We also have a
drop-down which we will use to list the available voices. The real magic
happens in the script that we’ve used - this starts by performing a check to
see if our browser supports the API and displays a suitable message.

Assuming your browser does support the API (and most browsers from
the last 3-4 years will), we then define a number of placeholder variables
for various elements on the page. We then (through the loadVoices()
function) iterate through the available voices before populating the
drop-down with the results. Of particular note is the second call to
loadVoices(); this is necessary as Chrome loads them asynchronously.

11

CHAPTER 1 GETTING STARTED

It's important to note that the extra voices (which start with
“Chrome...”) are added as part of the API interacting with Google and
so only appear in Chrome.

If we then jump to the end of the demo for a moment, we can see an
event handler for the button element; this calls the speak() function that
creates a new utterance of the SpeechSynthesisUtterance() object that
acts as a request to speak. It then checks to make sure we've selected a
voice, which we do using the speechSynthesis.getVoices() function. If a
voice is selected, then the API queues the utterance and renders it as audio
via your PC’s speakers.

Okay, let’s move on. We've explored the basics of how to render text as
speech. This is only half of the story though. What about converting verbal
content into text? This we can do by using the SpeechRecognition API - it
requires a little more effort, so let’s dive into the second of our two demos
to see what’s involved in making our laptops talk.

Converting speech to text

The ability to vocalize content through our PC’s speakers (or even
headphones) is certainly useful, but a little limiting. What if we can ask
the browser to perform something using the power of our voice? Well, we
can do that using the second of the two Speech APIs. Let me introduce the
SpeechRecognition API!

This sister API allows us to speak into any microphone connected to
our PC, for our browser to perform any manner of preconfigured tasks,
from something as simple as transcribing tasks to searching for the nearest
restaurant to your given location. We'll explore some examples of how to
use this API in projects later in this book, but for now, let’s implement a
simple demo so you can see how the API works in action.

12

CHAPTER 1 GETTING STARTED

| would not recommend using Firefox when working with demos

that use the Speech Recognition API; although documentation on the
Mozilla Developer Network (MDN) site suggests it is supported, this
isn’t the case, and you will likely end up with a “SpeechRecognition is
not a constructor” error in your console log.

“WHAT DID | SAY?”

Let’s crack on with our next exercise:

1. We’ll start by browsing to https://www.codepen.io and
then clicking Pen. Make sure you’ve logged in with the account
you created back in the first exercise.

2. Our demo makes use of Font Awesome for the microphone icon
that you will see in use shortly — for this, we need to add in
references for two CSS libraries. Go ahead and click Settings »
CSS. Then add in the following links into the spare slots at the
bottom of the dialog box:

https://use.fontawesome.com/releases/v5.0.8/css/
fontawesome.css
https://use.fontawesome.com/releases/v5.0.8/css/solid.css

3. Next, switch to the HTML pane and add the following markup
which will form the basis for our demo:

<link href="https://fonts.googleapis.com/css?family=0Open+
Sans&display=swap" rel="stylesheet">

<div id="page-wrapper">
<h2>Introducing HTML5 Speech API: Converting Speech to
Text</h2>

13

https://www.codepen.io

CHAPTER 1

14

GETTING STARTED

<button>
<i class="fa fa-microphone"></i> Click and talk to me!
</button>
<div class="response">

</div>

<p class="output">You said: <strong class="output_

result"></p>

Spoken voice: US English
</div>

On its own, our markup certainly won’t win any awards for
style! To fix this, we need to add in a few styles to make our
demo look presentable. For this, add the following rules into the
CSS pane, starting with some basic rules to style the container
for our demo:

*, *:before, *:after { box-sizing: border-box; }
html { font-family: 'Open Sans', sans-serif; font-size:
100%; }

#page-wrapper { width: 640px; background: #ffffff;
padding: 16px; margin: 32px auto; border-top: 5px solid
#9d9dod; box-shadow: 0 2px 10px rgba(0,0,0,0.8); }

h2 { margin-top: 0; }
Next come the rules we need to style our talk button:

button { color: #0000000; background: #dcdcdc; border-
radius: 6px; text-shadow: 0 1px 1px rgba(o, 0, 0, 0.2);
font-size: 19px; padding: 8px 16px; margin-right: 15px; }
button:focus { outline: 0; }

input[type=text] { border-radius: 6px; font-size: 19px;

padding: 8px; box-shadow: inset 0 0 5px #666; width:
300px; margin-bottom: 8px; }

CHAPTER 1 GETTING STARTED

Our next rule makes use of Font Awesome to display a suitable
microphone icon on the talk button:

.fa-microphone:before { content: "\f130"; }

This next set of rules will style the output once it has been
transcribed, along with the confidence level and the voice
characterization used:

.output_log { font-family: monospace; font-size: 24px;
color: #999; display: inline-block; }

.output { height: 50px; font-size: 19px; color: #000000;
margin-top: 30px; }

.response { padding-left: 260px; margin-top: -35px;
height: 50px}
.voice { float: right; margin-top: -20px; }

Okay, so we have our markup in place, and it looks reasonably
OK. What’s missing? Ah yes, the script to make it all work! For
this, go ahead and add in the following code to the JS pane.
We have a good chunk of code, so let’s break it down block by
block, starting with some variable declarations:

'use strict';

const log = document.querySelector('.output log');
const output = document.querySelector('.output result');

const SpeechRecognition = window.SpeechRecognition ||
window.webkitSpeechRecognition;
const recognition = new SpeechRecognition();

recognition.interimResults = true;
recognition.maxAlternatives = 1;

15

CHAPTER 1

16

9.

10.

11.

GETTING STARTED

Next up is an event handler that triggers the microphone. Leave
a blank line and then add the following code:

document.querySelector('button').
addEventListener('click', () => {
let recoglang = 'en-US';
recognition.lang = recoglang.value;
recognition.start();

};

When using the Speech Recognition API, we trigger a number
of events to which we must respond; the first one recognizes
when we start talking. Go ahead and add the following lines
into the JS pane of our CodePen demo:

recognition.addEventListener('speechstart', () => {
log.textContent = 'Speech has been detected.';

}s

Leave a blank line and then add in these lines — this event
handler takes care of recognizing and transcribing anything we
say into the microphone, as well as calculating a confidence
level for accuracy:

recognition.addEventListener('result', (e) => {
log.textContent = 'Result has been detected.';

let last = e.results.length - 1;
let text = e.results[last][0].transcript;

output.textContent = text;

log.textContent = 'Confidence: ' + (e.results[o0][0].
confidence * 100).toFixed(2) + "%";

})s

CHAPTER 1 GETTING STARTED

12. We’re almost done, but have two more event handlers to add
in — these take care of switching off the Recognition APl when
we’re done and also displaying any errors on screen if any
should appear. Leave a line and then drop in the following code:

recognition.addEventListener('speechend', () => {
recognition.stop();

1;

recognition.addEventListener('error', (e) => {
output.textContent = 'Error: ' + e.error;

D;

13. At this point, we’re done with editing code. Go ahead and hit the
Save button to save our work.

A completed version of this demo can be found in the code download
that accompanies this book — it’s in the whatdidIsay folder.

At this point, we should be good to run our demo, but if you were to
do so, it’s likely that you won’t get any response. How come? The simple
reason is that we have to grant permission to use our PC’s microphone
from within the browser. It is possible to activate it via the Settings entry
in the site’s certificate details, but it’s not the cleanest method. There is
a better way to prompt for access, which I will demonstrate in the next
exercise.

Allowing access to the microphone

When using the Speech AP], there is one thing we must bear in mind -
access to the microphone will by default be disabled for security reasons;
we must explicitly enable it before we can put it to use.

17

CHAPTER 1 GETTING STARTED

This is easy to do, although the exact steps will vary between
browsers - it involves adding a couple of lines of code to our demo to
request access to the microphone and changing a setting once prompted.
We'll see how to do this in our next exercise, which assumes you are using
Chrome as your browser.

ADJUSTING PERMISSIONS

Let’s make a start on setting up permissions:

1. First, go ahead and browse to the microphone settings in
Chrome, which you can get to via chrome://settings/
content/microphone. Make sure the slider against “Ask
before accessing...” is over to the right.

2. In a separate tab, switch back to the SpeechRecognition API
demo in CodePen that you created in the previous exercise;
look for this line:

const output = document.querySelector('.output _result');
3. Leave a line blank below it and then add in this code:

navigator.mediaDevices.getUserMedia({ audio: true
}).then(function(stream) {

4. Scroll down your code until you get to the end. Then add in this
small block of code:

1)

.catch(function(err) {
console.log(err);

}s;

18

CHAPTER 1 GETTING STARTED

5. Next, go ahead and click the drop-down arrow to the far right
of the JS pane. When it pops up, you will see an entry for Tidy
JS. Click it to reformat the code correcitly.

6. Save the update and then refresh the page. If all is well, you will
see an icon appear at the end of the address bar (Figure 1-2).

Figure 1-2. Microphone support has been added, but is disabled...

7. Click it. Make sure the “Always allow https://codepen.
io...” option is selected. Then click Done.

8. Refresh the window. The icon will change to a solid black one,
without the forbidden cross symbol showing.

Try clicking the “Click and talk to me!” button and then talking into your
microphone. If all is well, we should see something akin to the screenshot
shown in Figure 1-3, where it displays the result of a spoken test phrase,
along with the confidence level.

Introducing HTMLS Speech API: Converting Speech to
Text

& Click and talk to me! Confidence: 97.81%

You said: hello this is a test

Spoken voice: US English

Figure 1-3. The results of talking into our microphone...

19

https://codepen.io
https://codepen.io

CHAPTER 1 GETTING STARTED

When talking, did you notice how the red dot/circle appears in the
browser window tab (as illustrated in Figure 1-4, overleaf)? This indicates
that the microphone is active and will record any spoken words.

@ Introducing HTMLS Speech . @ X +

Figure 1-4. The red dot signifies an active microphone

If we hit the “Click and talk to me!” button again, this red circular
icon will disappear, to signify that the microphone has been turned
off. In our previous demo, we made use of navigator.mediaDevices.
getUserMedia() to achieve this - this is something we will likely have to do
for any site where we implement speech, as we can’t be sure that users will
have enabled their microphone!

If you would like to know more about using navigator.mediaDevices.
getUserMedia(), there is a useful article on the Mozilla Developer
Network site at https://developer.mozilla.org/en-US/
docs/Web/API/MediaDevices/getUserMedia.

Setting access: An alternative method

There is, however (as with many things in life), a different way to crack
this nut; it doesn’t require code, but it isn’t as clean a method. It involves
setting the right permissions as we did before, but this time going to a site
that we know is enabled for microphone use.

20

https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia

CHAPTER 1 GETTING STARTED

ENABLING THE MICROPHONE: AN ALTERNATIVE METHOD

This method assumes the use of Chrome, although it is likely a similar method
will be available for Firefox and other browsers:

1. Ina separate tab, browse to chrome://settings/content/
siteDetails?site=https%3A%2F%2Fcodepen.io and
then make sure that the entry for the microphone is set to Ask.

2. Revert back to the tab where your CodePen demo is running,
and refresh the window. You should see a prompt appear, as
indicated in Figure 1-5, overleaf.

& Introducing HTMLS Speech APl X +

< C @ codepen.io/alexlibby/pen/RwbBNYa?editors=0010
. X
codepen.io wants to
& Use your microphone
d Allow Block —

Introducing HTMLS Speech API:

Figure 1-5. Requesting access to the microphone from the browser

Over the course of the last few pages, we worked through three

exercises. It's important to note though that when working with this AP]I,

there will be a little extra effort required. In addition to initiating the

request for the API, we've also had to add in code to enable access to the

microphone. We'll revisit the subject (and security implications) of using it

a little later on, but for now, let us review the code we used in the last two

exercises, in more detail.

21

CHAPTER 1 GETTING STARTED

Breaking apart our code

As in the previous text-to-speech demo, we start with some basic markup
and styling to give us a button we can use to activate recording our voice
and two placeholder slots for the converted text and confidence level.

The magic, however, happens in the JavaScript code that we've added
in. We start by defining references to the .output_ elements within our
markup. Next, we define window.SpeechRecognitionas a reference
to the API; note that we have it set as an OR statement, to ensure we
cover those browsers that still require vendor prefix support. As part of
this, we also set two attributes: recognition.interimResults is set to
true to enable the display of text as it is being converted from speech. The
other, recognition.maxAlternatives, is set to 1 to display a maximum
of one alternative word, when it has been recognized by the speech
recognition service.

It's important to note that the bulk of our JavaScript code will be
wrapped inside a navigator.mediaDevices.getUserMedia()
block, so it runs once we’ve enabled access to the microphone.

Our code then contains a set of event handlers, to recognize different
events: The first is fired by clicking the “Click and talk to me!” button.
This sets the language to be used (US English) and starts the recognition
service. The second event handler, speechstart, takes care of recognizing
when we start talking and transcribing any spoken content. The final two
(result and error) are fired when we stop talking or if an error is thrown,
such as access to the microphone that has been blocked. In the final part of
this extended demo, we then explore a couple of options for enabling the
microphone; we discuss how the code route will be preferable for users.

Okay, let’s move on. Now that we've been introduced to both of the
APIs, it’s time we delved into a little of the theory, to see how these APIs

22

CHAPTER 1 GETTING STARTED

operate! We'll examine each API in more detail in the next chapter, but for
now, let’s answer two critical questions: How well are these APIs supported
(and can I provide fallback support)? How do I manage the security

implications of accessing someone’s microphone remotely?

Allowing for browser support

Cast your mind back to the start of this chapter - remember how I
mentioned the words “experimental API"? Yes, it has to be said that these
APIs are yet to reach official status. However, before you run to the hills
thinking “What have I let myself in for?’, it’s not as bad as it sounds! Let me
explain what I mean.

It is true that the API is still experimental - we can make allowances
for this with careful research and by working on the basis that we only
enhance an existing service, not replace it. As a start, our first port of call
should be a web site such as CanlUse.com; a quick check shows that the
SpeechSynthesis API has excellent support, at least on desktop (Figure 1-6).

Android

IE Edge Firefox Chrome Safan Opera 105 Safari Opera Mini B

5.1

67

123
8 T 5 B

Figure 1-6. Browser support for the Speech Synthesis API

In contrast, though, support for the Speech Recognition API is not so
advanced, as indicated in Figure 1-7.

CHAPTER 1 GETTING STARTED

Android
Browser

IE Edge Firefox Chrome Safari Opera i0S Safari © Opera Mini *

Figure 1-7. Browser support for the Speech Recognition API
Source: https://caniuse.com/#search=speech

We can clearly see that supportisn’t so advanced as for the Speech
Synthesis AP, yet the chart is hiding a secret: Safari does indeed support
both APIs! Although a site such as CanlUse.com is a good starting point, it
is only ever as accurate as the information it is based on. It does indeed pay
to check support with each browser vendor as much as possible; otherwise,
we may base a future financial information on inaccurate information.

Now, | hear you ask, “What about mobile?” Well, support for both APIs
is still being developed; although it has yet to extend to all platforms,
it nevertheless covers the key platforms of Android (for both Chrome
and Firefox) and Samsung.

Now that we're aware of the level of support each browser provides,
what about those browsers which don’t support either API? Is there a
fallback option or some other alternative we can use...?

Providing fallback support

Well, the answers to both questions at the end of that discussion aren’t as
straightforward as we might like. Let me explain what I mean.

At the heart of this question lies one important point - the Speech
Synthesis API relies on using Google’s neural Al capabilities to decode and
return text as speech in the chosen style. So what does this mean for us?

24

https://caniuse.com/#search=speech

CHAPTER 1 GETTING STARTED

The reliance on Google for the Synthesis API means that support will be
limited to newer browsers only; this covers all recent desktop browsers,
except Internet Explorer (IE). For those of you supporting mobile devices,
it is only available for Chrome or Firefox for Android, Samsung Internet,
and two smaller specialist browsers.

At the moment, there isn’t really a suitable fallback in the strictest
sense. While for some this may be disappointing, there is an argument
that says we should be looking forward and not backward when it comes
to browser support. That IE doesn’t offer support for the Speech Synthesis
APIwill come as no surprise to many; those mobile platforms that don’t
support the API (such as Android Browser) add up to around 5% of total
usage, so this can be safely discounted. There is equally an argument that
says we should not rely on either API for core functionality in our site or
application; speech provision should enhance the basic service and not
replace it.

If we switch to the Speech Recognition API though, supportis a
different story - support is still very much in its early stages. It’s limited
to recent versions of Edge, Firefox, and Chrome which are supported
for desktop; the bulk of support in the mobile world falls to Chrome for
Android. The same arguments vis-a-vis looking forward apply here too;
APIs such as Speech should be considered as a tool for progressively
enhancing the experience.

Talking of progressive enhancement, there are a couple of options we
can consider. These are

¢ ResponsiveVoice - this is a commercial service available
from https://responsivevoice.com; it provides extra
support such as better accessibility for navigation, but
this comes at a price of USD39 a month, which will
need to be factored into any operational costs.

25

https://responsivevoice.com

CHAPTER 1 GETTING STARTED

e Annyang is a free library by Tal Ater, which is designed
to make the Speech Recognition API easier to use; this
is available under the MIT license from https://waw.
talater.com/annyang/.

The downside of these though is that they will only progressively
enhance service provided by a browser that already supports the API; this
lends extra weight to the argument that we should encourage people to use
newer browsers where possible!

Understanding security concerns

Over the course of this chapter, we've been introduced to the Speech API
for the first time and seen the basics of how it works. Yet, I'm sure (as with
any new technology) there is one burning question we have yet to ask:
what about security and privacy? With the presence of the European-
wide GDPR legislation now in effect, the question of privacy has come to
the fore; this is no more important a consideration than when using the
Speech APIL

The main consideration is getting permission to use the microphone
when working with the Speech API; this used to be every time a request
is made in a nonsecure HTTP environment. There was a time when
this wasn’t necessary, but dubious web sites began to exploit this with
advertising and scams. As a result, Google (and now others) enforces
the need to use the APIin an HTTPS-secured environment and that
permission to use the microphone has to be given explicitly by the user.

If you want to read up on the technical reasons for this, details are
given in the official bug report on this vulnerability, which is listed
at https://bugs.chromium.org/p/chromium/issues/
detail?id=812767

26

https://www.talater.com/annyang/
https://www.talater.com/annyang/
https://bugs.chromium.org/p/chromium/issues/detail?id=812767
https://bugs.chromium.org/p/chromium/issues/detail?id=812767

CHAPTER 1 GETTING STARTED

As a user, you may only get asked once for permission on a fully

secured site, before audio can be captured; subsequent uses in the same

session will utilize the same permission until the page has been refreshed.

For some, this might be seen as a vulnerability, as a secure web page

can effectively record any content, once it has been authorized. This is

compounded by the fact that the Chrome API interacts with Google, so will

not stay within the confines of your browser!

So can we do anything to help maintain security and our privacy?

There are a few things we can bear in mind when working with the APIs:

Although any page using the Speech Recognition API in
Chrome will interact with Google, the only information
that is sent to Google is an audio recording, the domain
of your web site, your default browser language, and
current language settings of your web site (no cookies
are sent). If the Speech Recognition API is used in a
different browser, this does not interact with Google.

If you are using the Speech Recognition API, make
sure you do not create any event handlers that contain
sensitive information, which could potentially be sent
to Google. Ideally this information should be stored
locally, and any command sent is effectively a key to
unlock access.

The entire page will have access to the output of the
audio capture, so if your page or site is compromised,
the data from the audio instance can be read. It makes
itincumbent on us to ensure that we are securing
access (which has become the default for many

sites now), but also that we are using good-quality
certificates on a properly secured and updated server.

27

CHAPTER 1 GETTING STARTED

o The API (and particularly the Speech Recognition API)
is still very much in a state of flux; it is possible that
Google’s role could change or be discontinued at some
point in the future. Nothing can be considered official
until the W3C has granted official recognition to using
the APIs in browsers.

e Atthis time, I would recommend carefully checking
through your site’s analytics, to explore which browsers
are being used that support the API. If there is sufficient
demand, then you can consider starting to add
functionality, but as mentioned earlier, I would strongly
recommend taking a careful and measured approach,
so that you maintain a good experience for customers.

Okay, certainly some food for thought there! Hopefully this won’t have
put you off; as with any new technology, it’s important to embrace it, but
to take a measured approach, rather than jumping in blindly! Throughout
the course of this book, we will dig into the API in more detail and use it in
a number of example projects, so you get a feel for how it can be used in a
practical context. Just imagine: how about using the API to add products to
a shopping cart and pay for them, all with the power of your voice?

Summary

In an age of modern smart assistants (such as Amazon’s Alexa), the ability
to create web applications that can be controlled using the power of voice
opens up some really interesting possibilities. We must equally consider
how best to make use of the API, particularly with privacy being at the
forefront of users’ minds! Over the course of this chapter, we've started to
take a look at the Speech API in detail; let’s take a moment to review what
we have learned in more detail.

28

CHAPTER 1 GETTING STARTED

We kicked off by introducing both the Speech Synthesis and
Recognition APIs, before taking a quick look at what is required to start
developing with these APIs.

We then moved onto implementing our first examples - we started
with reading back text as speech, before switching to creating an example
using the Speech Recognition API. We then talked briefly about how to
enable access to the microphone for the second of these two APIs, before
exploring some of the concerns about providing support and allowing for
privacy and security when using the APIs.

Phew! We've only just gotten started, folks. Hope you're ready to really
get stuck in to the detail! Up next, we’ll take a look at the API in more detail
while creating a more practical example and exploring how we can provide
more support for different languages. As one might say in Dutch, Laten we
doorgaan, or let’s crack on...!

29

CHAPTER 2

Exploring the APls
in More Detail

Understanding the API terminology

“Great! My PC can now talk and recognize my voice. But
what’s the SpeechSynthesisUtterance keyword that I see in the
code mean...2”

It’s a good question. Now that you've seen the API in operation, I'll bet
you're eager to understand how it hangs together, right? We've only
touched on the basics of making our PC speak or recognize our voice.
There is much more we can do!

Over the course of this chapter, we're going to dive into some of the
theory behind the API, before using it (or them - depending on how you
see it), to create something a little more practical. At the same time, we’ll
also give our code a little international flavor - yes, we are not limited
to speaking just English! All will become clearer later in the chapter, but
for now, let’s start by breaking down the Speech Recognition API into its
constituent parts.

© Alex Libby 2020
A. Libby, Introducing the HTML5 Web Speech API,
https://doi.org/10.1007/978-1-4842-5735-7_2

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

Exploring the Speech Synthesis API

Take a look back at the code we created for our first demo, where our PC
replayed some sample text as speech. At first glance, it looks like we need a
fair chunk of code to achieve this, right? What if I said you could do this in
as little as one line of code...?

Yes, you heard me correctly. The crux of that demo centers around this
line of code:

window.speechSynthesis.speak(msg);

where we invoke a call to speechSynthesis and ask it to speak the value of
msg. By itself, this won’t work, but if we alter it a little, to this:

speechSynthesis.speak(new SpeechSynthesisUtterance('Hello, my
name is [insert your name here]'))

it will work fine when executed in a browser console (you may need

to allow pasting in the console, if you're using Firefox). Go on, put

your name in as indicated, and give it a try! However, there is more

we can do with the API than this simple one-liner. What about this
SpeechSynthesisUtterance() I see in the code or the call to getVoices()?
Well, one is an object and the other a method. Let’s dive in and see how
this APT works in more detail.

Breaking apart the API

At the core of the Speech Recognition API is the SpeechSynthesis
interface; this is our interface into the speech service. We can use a host
of methods to control activity, but before we do so, we must first define
the SpeechSynthesisUtterance object. This object represents a speech
request, into which we pass a string that the browser should read aloud:

const utterance = new SpeechSynthesisUtterance('Hey")

32

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

Once this has been defined, we can use it to tweak individual speech
properties, such as those listed in Table 2-1, with a more complete list in
the Appendix at the back of this book.

Table 2-1. Properties of the SpeechSynthesisUtterance object

Property Purpose

utterance.rate Sets the speed, accepts between [0.1 and 10], defaults to 1.
utterance.pitch Sets the pitch, accepts between [0 and 2], defaults to 1.
utterance.volume Sets the volume, accepts between [0 and 1], defaults to 1
utterance.lang Sets the language (values use a Best Current Practice 47

[BCP47] language tag, like en-US or it-IT).

utterance.text Instead of setting it in the constructor, you can pass it as a
property. Text can be a maximum of 32767 characters.

utterance.voice: Sets the voice (more on this in the following)

If we put this together into a simple example that we canrun in a
console session (not forgetting to add our name as indicated!), it would
look something like this:

const utterance = new SpeechSynthesisUtterance('Hey, my name is
[insert your name here]")

utterance.pitch = 1.5

utterance.volume = 0.5

utterance.rate = 8

speechSynthesis.speak(utterance)

We can then use the speak(), pause(), resume(), or cancel()
method to control the SpeechSynthesis object.

33

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

In our next exercise, we'll put this additional functionality to good use
and expand our original demo from Chapter 1, to include options that
provide finer control over the speech returned, as our next demo. When
we're done, our demo will look like the screenshot shown in Figure 2-1.

Introducing HTMLS5 Speech API:
Reading Text back as Speech

/] Your browser suppchs speech synthesis.

this is a test to see if additional controls work OK

Voice :Microsol’t Hazel Desktop - English (Great Britain) v:
Volume v
Rate v
Pitch v

Speak Pause Resume

Figure 2-1. Our updated SpeechSynthesis demo, with added controls

The changes we will make will be relatively straightforward, but a good
indication of how we can start to develop our original. Let’s jump in and
take a look at what’s needed, in more detail.

Improving our SpeechSynthesis demo

In our next exercise, we will add in three sliders to control levels such as
volume, pitch, and rate, along with buttons to pause and resume spoken
content.

34

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

ADDING FUNCTIONALITY

Let’s make a start on adding the extra markup needed for our demo:

All of the code you need for this demo is in the updating speechsynthesis
folder, in the code download that accompanies this book.

1. We’ll begin by browsing back to the demo you created in
CodePen, back in Chapter 1 — when there, make sure you log
in, so we can save changes to the demo.

2. First, look for this block of code:

<div class="option">
<label for="voice">Voice</label>
<select name="voice" id="voice"></select>
<button id="speak">Speak</button>

</div>

3. Immediately below this block (and before the closing page-
wrapper <div>), insert the following code — this adds in sliders
for volume, rate, and pitch levels:

<div class="option">
<label for="volume">Volume</label>
<input type="range" min="0" max="1" step="0.1"
name="volume" id="volume" value="1">

</div>

<div class="option">
<label for="rate">Rate</label>
<input type="range" min="0.1" max="10" step="0.1"
name="rate" id="rate" value="1"»>

</div>

35

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

<div class="option">
<label for="pitch">Pitch</label>
<input type="range" min="0" max="2" step="0.1"
name="pitch" id="pitch" value="1">

</div>

4. Next, look for this line of code, and remove it from its current
location in the markup:

<button id="speak">Speak</button>

5. Scroll down to the end of the markup, and add in the following
three lines immediately before the closing </div>, as
highlighted:

<button id="speak">Speak</buttons

<button id="pause">Pause</buttons

<button id="resume">Resume</buttons
</div>

6. With the markup in place, we need to make a couple of
adjustments to our styling; otherwise, elements will not appear
properly on the page. For this, go ahead and comment out or
remove the highlighted line of code from the #voice style rule:

#voice { /*margin-left: -70px;*/ margin-right: 70px;
vertical-align: super; }

7. The range sliders we’ve added also need adjusting. Go ahead
and add this in below the input[type="text"] rule, leaving
a blank line after that rule:

input[type="range"] { width: 300px; }

36

10.

11.

CHAPTER 2

EXPLORING THE APIS IN MORE DETAIL

It's time to add in the JavaScript code to bring life to our new
buttons and range controls. Look for the button variable
declaration and then add in the following code as highlighted:

var button = document.getElementById('speak');

var pause = document.getElementById('pause’);

var resume = document.getElementById('resume');

Next up, leave a blank line and then add in the following
declarations — these are cache references to each of the range
sliders we are using to adjust volume, rate, and pitch:

// Get the attribute controls.

var volumeInput = document.getElementById('volume');
var rateInput = document.getElementById('rate');
var pitchInput = document.getElementById('pitch');

Scroll down until you see the onvoiceschanged event
handler. Then leave a blank line just below it and add in this

new error handler:

window.speechSynthesis.onerror = function(event) {

console.log('Speech recognition error detected: ' +

event.error);

console.log('Additional information: ' + event.

message) ;

}

The next block is the speak () function — inside it, look for
msg.text = text, then leave a blank line, and add in these

assignments:

// Set the attributes.

msg.volume = parseFloat(volumeInput.value);

msg.rate = parseFloat(rateInput.value);

msg.pitch = parseFloat(pitchInput.value);

37

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

12. We’re almost done. Scroll to the end of the JS code section,
then leave a blank line, and add in these two event handlers.
The first takes care of pausing spoken content:

// Set up an event listener for when the 'pause' button
is clicked.
pause.addEventListener('click', function(e) {
if (speechMsgInput.value.length > 0 && speechSynthesis.
speaking) {
speechSynthesis.pause();
}
1;

13. The second event handler is fired when clicking the resume
button — for this, leave a blank line after the previous handler,
and add in the following code:

// Set up an event listener for when the 'resume' button
is clicked.
resume.addEventListener('click', function(e) {
if (speechSynthesis.paused) {
speechSynthesis.resume();
}
1;

14. We’re done with adding code. Make sure you save your work. If
all is working, we should see something akin to the screenshot
shown at the start of this exercise.

Try running the demo and adding something into the text box and
then altering the controls. With a little practice, we can produce some
interesting effects! Our code is now beginning to take shape and give us
something more complete we can use. Let’s quickly review the changes we
made to the code, in more detail.

38

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

Dissecting our code

We kicked off by adding in some markup to create suitable range sliders
for controlling volume, pitch, and rate settings - in all cases, we're using
standard input elements and marking them as HTML5 range types. We
then followed this by adding in two new buttons - these are used to pause
and resume spoken content.

The real magic came when we added in our script. We started by
adding in references to the two new buttons we created; these are assigned
the IDs of pause and resume, respectively.

Next up, we then created references to the three range sliders; these
were declared as volumeInput, rateInput, and pitchInput, respectively.
We then added in declarations within the speak() function, to capture
the values set for these range sliders, before assigning them to the
SpeechSynthesisUtterance object, as appropriate. We then finished
off the demo by adding in three new event handlers - the first to render
any errors generated to the console, the second to pause content when
our computer is talking, and the third to resume it when a user clicks the
resume button.

That was pretty straightforward, right? This is only part of the changes
we can make though. What about the sister API, Speech Recognition? As
we will soon see, this one requires a different mind-set when it comes to
making changes. Let’s take a look in more detail at some of the changes we
can make to augment the overall experience.

Exploring the Speech Recognition API

We've explored how we can make our browsers talk, but what about
recognizing what we say? In the demo we created back in Chapter 1, we
came across terms such as navigator.mediaDevices.getUserMedia(),
the speechstart event handler, and recognition.interimResults. What
do they all do?

39

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

Well, the first isn’t strictly part of the SpeechRecognition API; we use
this to control access to a microphone from within the browser. However,
the other two are indeed part of the API; unlike the SpeechSynthesis AP,
this is not one we can run as a one-liner in console. Instead, we need to
specify a few settings when working with this API - the key one being to
allow access to the microphone before we do anything!

Breaking apart the API

At the heart of the SpeechRecognition API is the SpeechRecognition
interface; this controls access to the speech recognition interface within
the browser. We first have to define a reference to this; once in place, we
can create an instance of the API interface using this line of code:

const recognition = new SpeechRecognition();

It’s important to note that within Chrome, this API makes use of a
remote server-based recognition engine, to process all requests. This
means it will not work offline - for that, we must use a different browser,
such as Firefox.

We can then specify suitable values for settings such as
interimResults or maxAlternatives, along with appropriate event
handlers to stop or start the speech service. Let’s take a look at some of
these settings in more detail; these are listed in Table 2-2.

40

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

Table 2-2. Properties of SpeechRecognition API

Property Purpose of property

SpeechRecognition. Returns and sets a collection of SpeechGrammar objects that

grammars represent the grammars that will be understood by the current
instance of the SpeechRecognition API.

SpeechRecognition. Returns and sets the language of the current

lang SpeechRecognition. If not specified, this defaults to the HTML
lang attribute value, or the user agent’s language setting if
that isn’t set either.

SpeechRecognition. Controls whether continuous results are returned for each

continuous recognition, or only a single result. Defaults to single (or false).

SpeechRecognition. Controls whether interim results should be returned (true)

interimResults or not (false). Interim results are results that are not yet final
(e.g., the SpeechRecognitionResult.isFinal property is false).

SpeechRecognition. Sets the maximum number of alternatives provided per result.

maxAlternatives The default value is 1.

SpeechRecognition. Specifies the location of the speech recognition service used by

serviceURI the current SpeechRecognition to handle the actual recognition.

The default is the user agent’s default speech service.

Once we've defined our chosen settings for the SpeechRecognition

object, we can then control it using three methods. We can start() the

service, stop() it, or abort() a reference to a current SpeechRecognition

object, in much the same way as we did for the Speech Synthesis demo

earlier in this chapter.

There is a full list of APl commands available in the Appendix, at the

end of this book.

41

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

However, unlike the Speech Synthesis API, there are not so many
options available for customizing the experience in quite the same
way; nevertheless, we can still implement a few changes to improve the
experience. With this in mind, let’s take a look at what we can to augment
our original demo.

Updating our SpeechRecognition demo

When working with the SpeechSynthesis API demo, we were able to

add in some additional properties from the API to help fine-tune the
experience for our users; this is not the case with the SpeechRecognition
API. Instead, we will take a different tack; we’ll add in some additional
error management features and better controls for automatically shutting
off the microphone using navigator.mediaDevices.getUserMedia().

EXPANDING THE OPTIONS

For the purposes of this exercise, we will go through each change in smaller
blocks; a screenshot of any visual changes will be displayed as appropriate.

Code for this demo is available in the code download that accompanies this
book — look in the updating speechrecognition folder.

Let’s make a start:

1. First, go ahead and browse to the Speech Recognition you
created back in Chapter 1, on the CodePen web site — make
sure you are also logged in, so you can save your changes.

2. Next, look for this line of code, and add the following
(highlighted) below it, leaving a line after the new code:

42

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

recognition.interimResults = true;
recognition.maxAlternatives = 1;
recognition.continuous = true;

3. The first change we’re going to implement is to begin to
improve the error handling — at present, we’re piping out the
error message verbatim, which doesn’t look great. With a few
changes, we can make it more friendly, so go ahead and alter
the error event handler, as indicated:

recognition.addEventListener("error", e => {
if (e.error == "no-speech") {
output.textContent = "Error: no speech detected";

} else { output.textContent = "Error: " + e.error; }

};

It's worth noting that we can expand this with other error codes, later if so desired.

4. The second change will be an auto turn-off for the speech
recognition engine — after all, we don’t necessarily want our
microphone to stay enabled if we’re not using it for a period
of time, right? For this change, look for the speechend event
handler, then leave a blank line, and add in this function:

recognition.onspeechend = function() {
log.textContent = 'You were quiet for a while so voice
recognition turned itself off.';
stream.getTracks().forEach(function(track) { track.stop() });
console.log("off");

}

We can see the result of this change in Figure 2-2.

43

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

N
Introducing HTMLS Speech API: Converting Speech to

Text
& Click and talk to me! You were quiet for a while
so voice recognition
turned itself off.
You said:

Spoken voice: US English

Figure 2-2. The addition of an auto shut-off feature

5. The third and final change is to exert more control over the
shutting off of our microphone — there will be occasions where
we may want to control when it is switched off, rather than it
appear to have a mind of its own! Fortunately, the changes for
this are very straightforward — the first is to add in an element
in our HTML markup as indicated:

<p class="output">You said: <strong class="output_
result"> </p>
<button id="micoff">Turn off</button>

6. The second change requires us to add in a new event handler —
rather than rely on the Speech Recognition APl automatically
shutting off, or trying to transcribe speech it hears that isn’t
intended, we can control when to turn off the microphone. To do
this, look for this line of code:

recognition.continuous = true
then leave a blank line and drop in the following code:

document.getElementById("micoff").
addEventListener("click", () => {
stream.getTracks().forEach(function(track)
{ track.stop() });
console.log("off");

};
44

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

7. We’ve made all of the changes needed. Go ahead and save the
results of your work. If all is well, we should see something akin
to the screenshot shown in Figure 2-3, where we can see our
improved error handling in action.

Introducing HTMLS Speech API: Converting Speech to
Text

& Click and talk to me!

You said: Error: no speech detected

Turn off I

Figure 2-3. Our updated Speech Recognition demo

Spoken voice: US English

If you try clicking the Turn off button to deactivate the microphone, be
patient — it can take a few seconds for the red indicator to disappear!

When researching code for this demo, I was struck by the amount
of apparent crossover that there seems to be with the event that can be
triggered when using the Speech Recognition API.

It’s for this reason that although we don’t have as many configuration
options to tweak as the Speech Synthesis API, the different event
handlers in the Speech Recognition API can still trip us up! With this in
mind, let’s take a look at the code from the demo we’ve just completed in
more detail.

45

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

Understanding the code

Over the course of the last few pages, we've taken a different approach to
developing our original demo - this time around, we’ve expanded it by
adding to or improving the overall experience, rather than simply adding
more options. Let’s take a moment to review the changes we’ve made to
our original demo in more detail.

We kicked off by updating the error event handler, where we did a
check for the no-speech error property and rendered a more acceptable
message back to the user. Our next change implemented an automatic
shut-off option - one thing we have to bear in mind when using the Speech
Recognition API (we don’t want it running without some control!)

The final change we made was to alter the automatic shut-off
function - an automatic turn-off is a useful feature, but there are
occasions where we might want control over when this happens. This is
particularly useful to help prevent our microphone from recording things
automatically, which should not be shared!

Okay, time for us to move on. We've explored the basics of how to
implement both the Speech Recognition and Synthesis APIs; it’s time we put
them to a more practical use! To show how we can combine them together,
we're going to create a simple video player that is controllable by voice; it will
confirm any action we ask of it, vocally, rather than displaying a message on
the screen. This will use principles from both of the demos we've created.
Let’s dive in and take a look at how this might work in action.

Creating a more practical example

For this next exercise, we’re going to add basic speech capabilities to a
video player that uses the HTML5 <video> element.

We'll focus on adding the play and pause commands for now, but we can
easily add extra commands such as increasing volume or muting sounds at a
later date. When finished, it will look like the screenshot shown in Figure 2-4.

46

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

Introducing HTMLS Speech API: A More Practical Use

b 028/956

Choose fle | bighuckbunny.mpd & Click and talk to me!

..diagnostic messages Confidence: --

Responses...
Figure 2-4. Our voice-controlled video player

As you set up the demo, take a look at some of the functions and
handlers in close detail - hopefully you should recognize a few elements
from previous demos! With that in mind, let’s crack on and make a start on
our demo.

ADDING SPEECH CAPABILITIES TO VIDEO

This next demo has a couple of requirements: You need to make sure you
have a suitable video available (MP4 format is fine; there is an example
video in the code download if you don’t have something suitable). We’ll be
building in a CodePen session, so make sure you’ve browsed to the site at
https://codepen.io and have logged in, before continuing:

47

https://codepen.io

CHAPTER 2

48

1.

EXPLORING THE APIS IN MORE DETAIL

We’ll begin by adding in the markup that we need as the basis
for our demo — for this, go ahead and copy the contents of the
HTML. txt file from the practical example folder into the
HTML pane on the right.

Next, let’s add in some rudimentary styling, so we can at least
make our demo look presentable — for this, go ahead and add
the contents of the CSS. txt file into the CSS pane.

We can now turn our attention to the really important part — our
script! There is a good chunk to add in, so we’ll do this block by
block, beginning with some variable declarations. Go ahead and
add the following lines of code in at the top of the JS pane:

"use strict";

const log = document.querySelector(".output_log");
const output = document.querySelector(".output");
const confidence = document.querySelector(".confidence em");

// Simple function that checks existence of s in str
var userSaid = function(str, s) {
return str.index0f(s) > -1;

};

The next block of code takes care of loading our video player
with our choice of video — this is so we can have it ready to
play when we give the command. Leave a blank line and then
add in the following code:

video file.onchange = function() {
var files = this.files;
var file = URL.createObjectURL(files[0]);
video player.src = file;

};

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

5. This next part gets a little trickier — we need to allow users
to request access to their microphone. For this, we use
navigator.mediaDevices.getUserMedia; we’ll begin by
adding in the construct for this first. Leave a blank line and then
add in this method call:

navigator.mediaDevices
.getUserMedia({ audio: true })
.then(function(stream) {

...add in code here...

}).catch(function(err) {
console.log(err);

};

6. With this in place, we can now start to add in the various
components needed to operate the Speech Recognition API; we
first need to define an instance of the API. Go ahead and add
this in, replacing the text . . .add in code here...:

const SpeechRecognition = window.SpeechRecognition ||
window.webkitSpeechRecognition;
const recognition = new SpeechRecognition();

7. Next comes our first event handler, which we will use to invoke
access to the microphone. For this, leave a line after the
SpeechRecognition API declarations and then add in this code:

document.querySelector("button").addEventListener
("click", () => {
let recoglang = "en-US";
recognition.lang = recoglang;
recognition.continuous = true;
recognition.start();

};

49

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

8. We now need to add in event handlers that take care of
switching on the APl when we begin to talk, or turning it off at
the appropriate moment; leave a line blank after the previous
handler and then add in this code:

recognition.addEventListener("speechstart”, e => {
log.textContent = "Speech has been detected.";

};

recognition.addEventListener("speechend”, e => {
recognition.stop();

};

recognition.onspeechend = function() {

log.textContent =
"You were quiet for a while so voice recognition
turned itself off.";
stream.getTracks().forEach(function(track) {

track.stop();

D;

console.log("off");

};

9. This next block is where the real magic happens — this controls
our video player by converting our spoken commands into
something it recognizes and translating it into the appropriate
command. Leave a line after the previous event handler and
then drop in this code:

// Process the results when they are returned from the
recogniser

recognition.onresult = function(e) {

// Check each result starting from the last one

for (var i = e.resultIndex; i < e.results.length; ++i) {

var str = e.results[i][0].transcript;

50

10.

11.

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

console.log("Recognised: " + str);
// If the user said 'video' then parse it further
if (request(str, "video")) {

// Play the video

if (request(str, "play")) {

video player.play();

log.innerHTML = "playing video...";
} else if (request(str, "pause")) {
// Stop the video

video player.pause();

log.innerHTML = "video paused...";
}

}

}

confidence.textContent =
(e.results[0][0].confidence * 100).toFixed(2) + "%";

b

We’re almost done. The last event handler to add in will take
care of some basic error trapping. Go ahead and add in this
event handler, leaving a line blank after the previous block:

recognition.addEventListener("error", e => {

if (e.error == "no-speech") {
log.textContent = "Error: no speech detected";
} else {
log.textContent = "Error: " + e.error;
}
D;

Save your work. If all is well, we should see something akin to
the screenshot shown at the start of this exercise.

51

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

Try choosing a video using the Choose file button and then saying “video
play” to kick it off — yes, it’s a little gimmicky, but it does serve a valid point.
Who says you always have to press buttons to start something? Yes, | would
absolutely consider myself to be a fan of old-school methods, but there comes
a time when one must adapt...!

If you take a closer look at the code in this demo, you will see that it uses
terms which we’ve already met from earlier demos; in the main, most of it
should start to look familiar now! There is one exception though - I don’t
see an event handler for result; what’s this .onresult handler I see...?

Exploring the code in detail

Aha! That is an important change to how we’re tracking the final output of
the API! It does work in a similar fashion to the result event handler we've
used before, but with one difference: that event handler is only called
once. I will explain what I mean shortly, but first, let’s go through our code
in more detail. I'll focus on the JavaScript, as the CSS and HTML used are
very standard and should be self-explanatory.

We began with declaring a number of variables for storing references to
elements in our markup, and to help with finding text in our spoken input
(more in a moment). We then moved on to creating a basic function to load
our video player with our chosen video, ready to play it on command.

The next block up is the start of the real crux of our demo - we initialize
a call to navigator.getUserMedia() to allow access to our microphone,
before declaring instances of the API (depending on the browser we use).

We then added in an event handler that initializes our API instance
with various properties - lang being set to US English and continuous to
prevent the API shutting down too quickly, before switching it on. Next
up came three event handlers to respond to speech - speechstart kicks
in when the API detects spoken content, speechend will terminate it, and
onspeechend will recognize if the API has been quiet and switch itself off.

52

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

The real focus of our demo comes next - here we made use of onresult.
This differs from the result event handler we’ve used before in that this
doesn’t fire once (which result does), but fires each time we've spoken and
the API detects that we've stopped speaking. I should point out that this is
not stopped speaking completely, but more a pause between each command
that we give! This function parses through the result using a for loop, to assign
each in turn to str, before performing the appropriate video command based
on what it hears. So, if we had said “play video,” it would search for each word
individually. Based on what it hears, it will detect that we’ve said video, so it
checks to see if we've said play or pause. If we said play (as we've done here),
itwould then pause the video and display confirmation on screen.

Okay, let’s crack on! Although many of the demos we've done so far will
likely be in English, there is one thing we should bear in mind: what about
support for different languages? In an age of global connectivity, we can’t
assume that people will just speak English (or indeed just one language, for
that matter!). We should absolutely consider adding support for different
languages; thankfully we can do this without too much difficulty using
the Speech APIs. Let’s dive in and take a look at what we need to do to add
multilingual support in more detail.

Going multilingual

In an ideal world, it would be great if we all spoke the same language -
after all, we’d be able to communicate with others in a different country,
and there’d be no misunderstandings...but that would be so boring!

There is something to be said for speaking to someone in a different
tongue; embracing a different culture and language adds an extra element
to a holiday or trip. The same applies to reading texts such as those found
in a museum; of course, you might not understand much or any of it, but
you will still get a feel for what things must have been like in that country’s
past history.

53

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

But I digress. Bringing things back to reality, we’ve talked about how
to turn speech into text or vice versa. What about other languages though?
We don’t all speak English (or indeed the same language), so how does
that work within either API?

Exploring support for languages

One of the benefits of using either the Speech Recognition or Speech
Synthesis AP is its support for other languages - there are a host of
different options available for us to use. The exact number, as we will
shortly see, will depend on which browser we use; this might be as many
as 21 or as few as just three!

We've already touched on including language support as part of the
Speech Synthesis demo we created back in Chapter 1 - remember the
rather intriguing list of names displayed in that demo? We can see an
extract of it in Figure 2-5.

Voice [Microsoﬂ Hazel Desktop - English (Great Britain) v
Microsoft Hazel Desktop - English (Great Britain)
Microsoft Zira Desktop - English (United States)
Google Deutsch
Google US English
Rate Google UK English Female

Google UK English Male

Google espaiiol
Pitch

| Google francais

Volume

Figure 2-5. (An extract of) Languages available for the
SpeechSynthesis API

To implement this, we created a loadVoices() function to iterate
through each language option, before adding it into a drop-down. We
then used the getVoices() method to select our chosen language, before
applying the change to the SpeechRecognition object.

54

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

If you want a reminder of how we did this, try running this simple
example in your browser console - I would recommend running it in the
console log for one of your CodePen demos, so that you can trigger access
to the microphone:

console.log(Voices #: {speechSynthesis.getVoices().length}");
speechSynthesis.getVoices().forEach(voice => {
console.log(voice.name, voice.lang)

};

At this point, it’s worth noting that this should work in most modern
browsers. You may find though you come across a cross-browser issue
when using this code with the SpeechSynthesis API - in some older
versions of Chrome, the original code we used won'’t operate.

It works fine in Firefox and Edge (and possibly Safari, for those of you
who are Mac users); instead, you may find you have to use a callback to get
the list to display, before using .getVoices to display the list:

const voiceschanged = () => {
console.log(Voices #: ${speechSynthesis.getVoices().length}");
speechSynthesis.getVoices().forEach(voice => {
console.log(voice.name, voice.lang)
)
}

speechSynthesis.onvoiceschanged = voiceschanged

You may find though that the number of languages returned differs
when using Chrome - the extra ones that start with “Google...” will only be
available if there is a valid network connection available. A copy of the list
is displayed in full, in Figure 2-6.

55

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

Voices #: 21 VM47:1
Microsoft Hazel Desktop - English (Great Britain) en-GB VMa7:3
Microsoft Zira Desktop - English (United States) en-US VM47:3
Google Deutsch de-DE VM47:3
Google US English en-US VM47:3
Google UK English Female en-GB VM47:3
Google UK English Male en-GB VM47:3
Google espafiol es-ES VM47:3
Google espafiol de Estados Unidos es-US VM47:3
Google francais fr-FR VM47:3
Google g4l hi-IN VM47:3
Google Bahasa Indonesia id-ID VM47:3
Google italiano it-IT VM47:3
Google B&EE ja-1p VMa7:3
Google =32 ko-KR vM47:3
Google Nederlands nl-NL VM47:3
Google polski pl-PL VM47:3
Google portugués do Brasil pt-BR VM47:3
Google pycckuit ru-RU VM47:3
Google &iliE (REXFE) zn-Cn VMa7:3
Google B:E (F#H) zh-HK VM47:3
Google EH:E (E®) zh-TW VMa7:3

Figure 2-6. A list of languages supported in the API

Otherwise, it will be reduced; Edge currently displays three, while
Firefox shows two. Suffice to say, it’s just another point to consider when
using the Speech APIs!

In contrast, adding lingual support into the Speech Synthesis API gets
more interesting - not only can we choose a language but we can even set
a dialect too! This does require some more work though to implement.
We'll see how to achieve this shortly, in our next exercise.

Setting a custom language

If we have a need to set language support when using the Speech
Recognition API, we have to take a different tack - instead of simply calling
the list from the API, we provide it with a list. This takes the form of what is

56

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

effectively a double array. This is a little complicated to explain, so bear with
me on this; [will use the following extract taken from our next exercise.

We start with the array - notice how not all entries are equal? Okay,
before you say anything, I'm referring to the number, not the text within! In
most cases, we have just the language and the BCP47 code (such as af-ZA),
but in the last one we have three values:

var langs =

[['Afrikaans', ['af-ZA']],

['Bahasa Indonesia',['id-ID']],

['Bahasa Melayu', ['ms-MY']],

['Catala’, ['ca-ES']],

['Cestina’, ['cs-CZ']],

['Deutsch’, ['de-DE']],

['English’, ['en-AU', 'Australia'],

(abridged for brevity)

BCP47, or Best Current Practice 47, is an IEFT international standard
used to identify human languages, such as de-DE for German. If you
would like to learn more, then head over to the Wikipedia article for a
good introduction, at https://en.wikipedia.org/wiki/IETF_
language tag.

We then iterate through the array using a construct such as this:

for (var i = 0; i < langs.length; i++) {
select language.options[i] = new Option(langs[i][0], i);
}

which puts it into an object from which we can pick the item that should
be displayed by default (in this case English):

select_language.selectedIndex = 6;

57

https://en.wikipedia.org/wiki/IETF_language_tag
https://en.wikipedia.org/wiki/IETF_language_tag

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

By itself, this won’t have any effect on the API; to make it work, we
need to add in one more function. At a high level, we iterate through the
array again, but this time pick out the dialect value (in this case, values
from the second column), before adding these to a <select> drop-down
box. We then need to set the visibility such that if we pick a language
that has multiple dialects, the dialect drop-down is displayed or hidden
accordingly. Hopefully this will begin to make some sense; to see how this
works in practice, let’s swiftly move to our next exercise, where we will see
how this code fits into our demo.

ALLOWING FOR LANGUAGES IN SPEECH RECOGNITION

For this next exercise, we’ll need to revert to the Speech Synthesis demo we
created back in Chapter 1 —to keep a copy of your previous code, | would
recommend logging in to CodePen and hitting the Fork button. Our demo will
start with you ready to edit the HTML code, so make sure you’re at this point
before continuing with the steps in this demo.

Although some of the changes we’re about to make are simple, others are more
involved. | would recommend making sure you avail yourself of a copy of the code
download for this book; everything will be in the 1anguage support folder.

Assuming you’re there, let’s get started with updating our demo:

1. The first change is in indeed in our HTML markup, so look for
this line and comment it out:

Spoken voice: US English
2. Next, go ahead and insert this block immediately below it:

Spoken voice and dialect:
<div id="div_language">

58

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

<select id="select_language"
onchange="updateCountry()">
</select>
<select id="select dialect"></select>
</div>

We now need to adjust where the new drop-downs sit — for
this, go ahead and add in the following CSS style at the bottom
of the CSS pane:

.voice { float: right; margin-top: -20px; }

The real changes though are in our JavaScript code
(naturally!) — for this, go ahead and open a copy of the JS.txt
file from the code download and then look for this line of code:
var langs = (it will be around line 7).

Copy it, and the following lines, down as far as (and including)
the closing bracket after this line:

select dialect.style.visibility = list[1].length == 1 ?
'hidden' : 'visible';
}

Paste the contents of the JavaScript from the code download,
immediately after this line, leaving a line between it and your
new block:

const output = document.querySelector(".output result");

Okay, next change: Scroll down until you see the start of this
event handler:

document.querySelector("button").addEventListener("click", ()

Comment out let recoglang = "en-US" inside this
function, and replace it with this:

recognition.lang = select dialect.value;

59

CHAPTER 2

9.

10.

11.

12.

EXPLORING THE APIS IN MORE DETAIL

Scroll down until you see this line: output.textContent =
text;

Next, add a blank line and then drop in this line of code, before
the closing bracket and parenthesis:

log.textContent = "Confidence: " + (e.results[o][0].
confidence * 100).toFixed(2) + "%";

At this point, we should have all of our code changes in place;
go ahead and save your work.

Try running the demo. If all is well, we should have something
akin to the screenshot shown in Figure 2-7. Try changing the
voice to a different language and then saying something —
hopefully you or a friend might know enough words to say
something that makes sense!

Introducing HTMLS Speech API: Converting Speech to
Text

& Click and talk to mel Confidence: 93.86%

You said: Bonjour je m'appelle Alex

Spoken voice:

Turn off Francais v

Figure 2-7. The results of speaking French to our demo

As we can see from the demo, it shows that I do know some French; I
can also get by with Spanish, although it’s nowhere near at the same level!
This aside, we've added a critical feature to this demo that is worth exploring
in more detail - let’s take a moment to explore how it works in more detail.

60

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

Breaking apart our code

If we take a closer look at the code we've just written, you might just spot
an oddity - don’t worry if you don’t though, as it isn’t immediately obvious!
I'll give you a clue to get you started: it has something to do with the value
we assign as our language - it’s not what you might at first expect...

Okay, I digress. Back to our demo, we kicked off by commenting out the
original text that indicated which language was being used; we replaced
this with two drop-downs, one for language and the other for the dialect.
We then brought in a substantial chunk of code, which first sets up an array
langs that stores both the language and dialect values. This we followed
with a for loop to iterate through the first set of values and insert each into
the select_language drop-down. We then set a couple of default values -
in this case English - for both the language and dialect properties.

Next up came the updateCountry() function - it looks a little complex,
butisn’t too hard to get our heads around it. We simply cleared out the
dialect drop-down (select_dialect) before populating it with values from
the second column of data (in this case, where we have the BCP47 values
that we talked about earlier).

The remaining changes are small ones - we reassigned the output
value from the select_dialect drop-down to recognition.lang and
added in a confidence statement which is rendered in the output_log
span element. Makes sense? Well, it would, if only for one nagging
problem. Why on earth does it look like we're setting the dialect value,
rather than the language value...?

The difference between language and dialect

If I were to ask you the subject of this section as a question, hopefully you
would say that language is something we would speak and that a dialect
is effectively a regional variation of that language...or something to that

61

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

effect! However, you'd be really confused if I said that, at least within the
context of this API, the two were actually two halves of the same thing, and
in some cases were the same! What gives...?

Well, the answer to that lies in five characters - BCP47. This is the
international standard that I alluded to earlier, where we see codes such
as pt-BR, or the Brazilian dialect of Portuguese. But the real trick though
is in how we make use of this in our code - although we select both the
language and dialect (where the latter is available), it’s not until we select
that dialect value that we get the real value used.

If, for example, we were to select that dialect of Portuguese, we
would get pt-BR; this is the value that the lang property needs for Speech
Recognition. In effect, we're using the language drop-down to filter our
choices, before selecting the real language via the dialect drop-down for
use in our demo.

Okay, let’s move on. There is one more feature we need to explore,
before we get into the practical fun stuff of building projects! As I hope
you've seen from the demos, speech recognition is developing well, but
it'’s not perfect. There may be occasions where we might want to give it a
helping hand. Let me introduce you to SpeechRecognition.Grammars.

Making use of grammar objects

Over the course of this chapter, we've explored the Speech APIs in more
detail, covering features such as adding multi-language support, providing
better control over when the microphone can be used, and refining what is
returned if we should encounter an error when using the APIs.

However, there may be instances where we need that helping hand -
this is where the grammars part of the SpeechRecognition API can play
its role. However, this feature is something of an oddity and comes with a
potential sting in its tail. Why?

62

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

Many have found it to be confusing at best, or actually not do what
they were otherwise expecting it to do. A part of this is likely due to when
the original specification was written; it was done at a time when the word
recognition rate wasn’t as good as it is now, and so it needed something to
give what could be described as a boost.

Consequently, support for the SpeechGrammarList interface is poor -
it's currently only supported in Chrome. It also makes use of the JSpeech
Grammar Format (or JSGF) which has been removed from most browsers.
Therefore, I would not recommend using this feature unless absolutely
necessary, and be aware that it should be used at your own risk and that it
is likely to be removed in the future.

If you want to see the technical detail and discussion around
the proposed removal, please refer to the W3C GitHub site at
https://github.com/w3c/speech-api/pull/57 and
https://github.com/w3c/speech-api/pull/s8.

Summary

When working with the Speech APISs, there are a host of options we can
use; we covered some of them when we were first introduced to the APIs
back in Chapter 1. Over the course of this chapter, we’ve built on what we
learned there with additional options. Let’s take a moment to review what
we have learned.

We kicked off by creating demos to explore both the Speech Synthesis
and Speech Recognition APIs in greater detail; we first covered more of
the options available within each API, before adding functionality to each
demo.

63

https://github.com/w3c/speech-api/pull/57
https://github.com/w3c/speech-api/pull/58

CHAPTER 2 EXPLORING THE APIS IN MORE DETAIL

Moving on, we then took a look at how we can add multi-language
support when using the APIs. We explored the basic principles behind
each API and how to set a custom language. This was swiftly followed by
a demo, before exploring the differences between setting language and
dialect properties and how both interact with each other to give us our
desired language setting.

We then rounded out the chapter with a look at the SpeechGrammar
interface. We covered how this could be used, but that there are plans
to drop support for it in the future; we covered some of the reasons why
this might be the case and how it may or may not affect your code in
practice.

Phew! Covered a lot, huh? Well, the pace isn’t going to slow down -
things will start to get really interesting! Over the course of the next few
chapters, we're going to implement some sample projects that illustrate
how we might make use of the APIs in a practical context. This will cover
anything from leaving verbal review feedback to automating part or all of
a purchase process; we're really only limited by our imagination! To kick
us off, we're going to start with a relatively new addition for some sites.
How about using the API to develop a chatbot, for example? Turn the
page to find out how we can start to have a proper conversation with your
web site...

64

CHAPTER 3

Supporting Mobile
Devices

“Juniper Research has forecasted that the number of smart
assistants will triple from 2.5 billion in use at the end of 2018
to 8 billion by 2023.”

Remember that shocker from the start of Chapter 1? Given that mobile
usage has now overtaken desktop, this makes for a powerful combination!
But - I hear you: “What is the significance of those two facts?” Well, let me
reveal all.

In previous chapters thus far, you may have noticed a focus on using
the desktop as our environment. There’s nothing wrong with this per se,
but it misses out one crucial point: what about using mobile devices?
Given that more and more people use smart devices to purchase products,
then it makes absolute sense to consider mobile devices when using the
Web Speech APIs.

Over the course of this chapter, we'll take a look at some of the demos
we've created in earlier chapters and explore using them on mobile
devices. Based on what you've seen so far, you might think this shouldn’t
be a problem, as most recent browsers support the APIs on the desktop,
right? Well, things are not all they may seem - be prepared to make some
decisions.

© Alex Libby 2020 65
A. Libby, Introducing the HTML5 Web Speech API,
https://doi.org/10.1007/978-1-4842-5735-7_3

CHAPTER 3 SUPPORTING MOBILE DEVICES

Supporting the Speech Synthesis API

Yes, that last comment might seem a little intriguing, but we will have
some decisions to make about how we might use the APIs within a mobile
environment! Let me explain what I mean by first illustrating the level of
support for the APIs on more popular mobile platforms, beginning with
Speech Synthesis (Figure 3-1).

Android * Chrome for Firefox for

iOS Safari Opera Mini Opera Mobile

Browser Android Android
3261
(-1
76 46 78 68

133

Figure 3-1. Support for the Speech Synthesis API Source: CanlUse.com

Ouch! That doesn’t seem quite as good as desktop, right? Granted
coverage isn’t as extensive as standard desktop users, but then with the
plethora of different platforms available, it’s not surprising that support
isn’t so uniform! However, it’s not as bad as it might seem - to understand
why relies on us making a conscious decision about one key question: how
much do we want to support Google Chrome?

Breaking down the numbers

To understand the answer to that last question, we should first see just who
supports the API and the current usage of that browser. Table 3-1 shows a
more detailed version of the information presented from Figure 3-1, where
we can see just which of the more popular browsers support the API.

66

CHAPTER 3 SUPPORTING MOBILE DEVICES

Table 3-1. Support for the Speech Synthesis API on mobile devices

Mobile browser Supported? % usage, as of December 2019
i0S Safari Yes 2.89
Opera Mini No 1.17
Android Browser No 0
Opera Mobile No 0.01
Chrome for Android Yes 35.16
Firefox for Android Yes 0.23
UC Browser for Android No 2.88
Samsung Internet Yes 2.73
QQ Browser Yes 0.2
Baidu Browser No 0
KaiOS Browser Yes 0.2

It’s easy to see that usage of Google Chrome far outstrips all of the
other browsers combined, by a factor of almost 3 to 1! It therefore raises the
question about whom we should support, particularly for any minimum
viable product (or MVP).

As either all other browser manufacturers don’t support the API
on mobile devices or usage of that browser is well below 5%, it would
make sense to focus on Chrome. To really ram the point home (as if it is
needed!), we can see just how much Chrome is used in Figure 3-2.

67

CHAPTER 3 SUPPORTING MOBILE DEVICES

Chrome 78 for Android

Support info Browser version

y.3) v Supported Released Oct 22,2019 2

Usage
Global: 35.16%

Figure 3-2. Chrome usage as of December 2019 Source:
CanlUse.com

This might seem a little drastic to cut out support for that number of
browsers, but in today’s world we need to be pragmatic: do we have the
resources or time to develop for all of the different browsers? Support for
Chrome is far outstripping others, so it makes commercial sense to focus
on this browser and only include others if the revenue is sufficiently large
enough to warrant deploying resources (such as for very large customers).

Supporting the Speech Recognition API

We've explored what the support is like for the Speech Synthesis API. How
does it compare with its sister, the Speech Recognition API?

Well, at first glance, support is not as good - in some respects, this isn’t
areal shock, as this API is more complex than the Speech Synthesis API, so
support isn’t as far advanced as that API. We can see an outline summary
for popular mobile platforms in Figure 3-3, shown overleaf.

68

CHAPTER 3 SUPPORTING MOBILE DEVICES

Android -
Browser

Chrome for Firefox for

Opera Mobile ™4 1 yroid Android

iOS Safari Opera Mini

133

Figure 3-3. Support for the Speech Recognition API on mobile
devices Source: CanlUse.com

At first glance, the main difference is that any support for this API has
yet to reach fully ratified status (whereas the other API already has); it
just means that we need to use the -webkit prefix when working with this
API. As we'll see shortly, this is no big deal; the real question though is in
the numbers of those who use the browser! To see what I mean, let’s dive
in and take a look at those numbers in more detail, just as we did for the
Speech Synthesis API.

Understanding the numbers

If we were to look at the detail of who supports the Speech Recognition
API, we see the same numbers of people using each browser as before.
This time around though, support for the API within each browser is just
under 25% less than those that support the Speech Synthesis API (allowing
for the use of a vendor prefix and that one browser requires it to be enabled
manually). We can see the results listed in Table 3-2.

69

CHAPTER 3 SUPPORTING MOBILE DEVICES

Table 3-2. Support for the Speech Recognition API on mobile devices

Mobile browser Supported? % usage, as of
December 2019

i0S Safari No 2.89

Opera Mini No 1.17

Android Browser No 0

Opera Mobile No 0.01

Chrome for Android (uses webkit prefix) Yes — partial 35.16

Firefox for Android No 0.23

UC Browser for Android No 2.88

Samsung Internet (uses webkit prefix) Yes — partial 2.73

QQ Browser (uses webkit prefix) Yes — partial 0.2

Baidu Browser (uses webkit prefix) Yes — partial 0

KaiOS Browser (uses webkit prefix) Can be enabled 0.2

It will be no surprise then that Chrome is the standout of this table, just
as it was for the Speech Synthesis API. If we were to hover over the figure
from the CanIUse.com web site, we would see the same result shown as
before!

A check of the numbers shown in Table 3-2 shows that it would make
perfect sense to focus efforts on developing for Google Chrome; any time
spent on other browsers should only be for large clients where revenue
opportunities can justify the effort required! Now that we’ve seen the
numbers for both APIs, it’s worth taking a few moments to summarize why
we should consider only developing for Chrome:

70

CHAPTER 3 SUPPORTING MOBILE DEVICES

e Chrome is the most popular, so we will get the biggest
exposure by focusing on this browser, where we can
reuse the same core functionality in both mobile and

desktop environments.

o If (heaven forbid) we come across any problems, we
should see them appear quickly and can then decide
to deactivate or pause the speech option sooner. It will
be harder to find issues on browsers where the usage
levels are much lower and with which we might not
know of any issue as quickly as with Chrome.

Okay, we've outlined the case for focusing on Chrome, given its
popularity and level of support; it’s time to get practical! Before we do so,
there are a couple of points we need to cover off with respect to the demos
in this chapter; this is to ensure you get the best effect when testing the
results of each exercise.

A couple of prerequisites

Over the course of this chapter, we will revisit some of the exercises we
created in CodePen from earlier chapters, with a view to adapting them for
displa