
Introducing the
HTML5 Web
Speech API

Your Practical Introduction to Adding
Browser-Based Speech Capabilities to
your Websites and Online Applications
—
Alex Libby

www.allitebooks.com

http://www.allitebooks.org

Introducing the HTML5
Web Speech API

Your Practical Introduction
to Adding Browser-Based

Speech Capabilities to your
Websites and Online

Applications

Alex Libby

www.allitebooks.com

http://www.allitebooks.org

Introducing the HTML5 Web Speech API

ISBN-13 (pbk): 978-1-4842-5734-0 ISBN-13 (electronic): 978-1-4842-5735-7
https://doi.org/10.1007/978-1-4842-5735-7

Copyright © 2020 by Alex Libby

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 New York Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer- sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.
apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484257340. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Alex Libby
Rugby, UK

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5735-7
http://www.allitebooks.org

This is dedicated to my family, with thanks for their love
and support while writing this book.

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 1: Getting Started ��1

Introducing the APIs ���1

Setting up our development environment ��2

Implementing our first examples ���5

Reading back text as speech ��5

Converting speech to text ���12

Allowing access to the microphone ��17

Setting access: An alternative method ��20

Allowing for browser support ��23

Understanding security concerns ���26

Summary ��28

Chapter 2: Exploring the APIs in More Detail �������������������������������������31

Understanding the API terminology ��31

Exploring the Speech Synthesis API ���32

Breaking apart the API���32

Table of Contents
About the Author ��xv

About the Technical Reviewer ��xvii

Acknowledgments ���xix

Introduction ���xxi

www.allitebooks.com

http://www.allitebooks.org

vi

Improving our SpeechSynthesis demo ���34

Dissecting our code ���39

Exploring the Speech Recognition API ���39

Breaking apart the API���40

Updating our SpeechRecognition demo ���42

Understanding the code ��46

Creating a more practical example ��46

Exploring the code in detail ���52

Going multilingual ��53

Exploring support for languages ���54

Setting a custom language ���56

Breaking apart our code ��61

The difference between language and dialect ������������������������������������61

Making use of grammar objects ��62

Summary ��63

Chapter 3: Supporting Mobile Devices ���65

Supporting the Speech Synthesis API ��66

Breaking down the numbers ���66

Supporting the Speech Recognition API ���68

Understanding the numbers ��69

A couple of prerequisites ��71

Checking support for the APIs ��72

Determining space available ��74

Setting available space using code ���75

Configuring Chrome’s Responsive Mode ���75

Table of ConTenTsTable of ConTenTs

vii

Implementing the Speech Synthesis API ��77

Adapting design for mobile ���78

Implementing the Speech Recognition API ��82

Adapting for mobile use ��83

Putting it together: A practical example ���85

Dissecting the code in detail ���87

Working with mobile: An epilog ��89

Summary ��90

Chapter 4: Combining the APIs: Building a Chatbot ���������������������������91

Why use a chatbot? ��91

Things to consider when building a chatbot ���������������������������������������92

Downsides to bots ���93

Different types of chatbots ���94

Setting the background ��96

Keeping things in scope ��97

Architecting our demo ��97

Alternative tools available ���99

Adding text editor support ��100

Getting tools in place ��101

Building our chatbot ���103

Configuring our chatbot���107

Exploring the code in detail ��114

Dissecting our HTML markup ��115

Pulling apart script�js: The Web Speech API ��������������������������������������115

Table of ConTenTsTable of ConTenTs

viii

Understanding how our bot is configured ��116

Exploring how RiveScript works: A summary ������������������������������������117

Dissecting the brain�rive file in detail ��118

Taking things further ��120

Adding language support ���121

Updating our demo ��122

Dissecting the code ���128

Summary ��129

Chapter 5: Project: Leaving Review Feedback ���������������������������������131

Setting the scene ���131

Keeping things in scope ��132

Architecting our demo ��133

Building our review panel ��133

Breaking apart the code in detail ���138

Exploring the HTML ���138

Exploring the JavaScript ���139

Adding it to a product page ��141

Adding language support ���145

Updating the demo ��147

Dissecting the code ���151

Leaving reviews: A postscript ���152

Taking things further ��154

Summary ��155

Chapter 6: Project: Building Alexa ��157

Setting the scene ���158

Architecting our demo ��158

Table of ConTenTsTable of ConTenTs

ix

Building our demo ��160

Creating the markup ���160

Making our demo come to life ��162

Breaking apart the code ���169

Solving a styling problem ��171

Adding new features ��174

Exploring the code in detail ���177

Adding support for different languages ���178

Breaking down the code ���182

Improving performance ��183

Taking things further ��185

Summary ��188

Chapter 7: Project: Finding a Restaurant ���189

Setting the scene ���189

Setting the parameters of our project ��190

Setting expectations ���192

Determining the business logic ��193

Architecting our project ��193

Setting up the initial markup and styling ���195

Initializing our project ���196

Making our bot talk ���198

Getting the restaurant details ��203

Adding speech input capabilities ��208

Configuring the bot ��211

Converting currencies into US dollars ���214

Table of ConTenTsTable of ConTenTs

x

Testing the demo ��216

Dissecting our code in detail ��219

Dissecting our HTML markup ��220

Breaking apart the main script file ��220

Exploring the bot configuration file ���224

Taking things further ��225

Formatting telephone numbers ���227

Adding location-based facilities ��228

Displaying more details about restaurants ���������������������������������������230

Summary ��231

Chapter 8: Project: Finding and Playing Music���������������������������������233

Setting the background to our project ���234

Why Spotify? ��236

Architecting our demo ��237

Authorizing our demo ���238

Choosing a method ���238

The implications of using our chosen method ����������������������������������239

Constraints of using this method ��242

Setting up prerequisites ���243

Creating the framework ���246

Getting authorization from Spotify ��250

Breaking apart the code ��255

Streaming content from Spotify ���256

Understanding the code ��264

Talking to Spotify ��265

Exploring the code in detail ���271

Table of ConTenTsTable of ConTenTs

xi

Taking things further ��272

Summary ��273

Chapter 9: Project: Automating the Purchase Process���������������������275

Setting the scene ���275

Keeping things in scope ���277

Architecting the project ��278

Preparing our shopping cart ���279

Setting expectations ���280

Adding speech capabilities ��281

Inserting the markup for our microphone ���282

Altering our product markup ���284

Adding the script functionality ��288

An alternative method of checking out ��296

Breaking apart the code ��301

Reducing the functionality: A note���302

Exploring the pitfalls of our solution ��303

Taking things further ��306

Summary ��308

Appendix: API Reference ��309

API Reference: SpeechRecognition ��309

API Interfaces ��310

Constructor ��310

Properties ��311

Methods ��312

Events ��313

Table of ConTenTsTable of ConTenTs

xii

API Reference: SpeechRecognitionEvent ���314

Properties ��314

API Reference: SpeechRecognitionError ��315

Properties ��315

API Reference: SpeechRecognitionResult ��315

Properties ��315

Methods ��316

API Reference: SpeechRecognitionResultList ��316

Properties ��317

Methods ��317

API Reference: SpeechRecognitionAlternative ���������������������������������������317

Properties ��318

API Reference: SpeechSynthesis ��318

API Interfaces ��318

Properties ��319

Methods ��320

Events ��321

API Reference: SpeechSynthesisUtterance ��321

Constructor ��321

Properties ��322

Events ��322

API Reference: SpeechSynthesisErrorEvent ���323

Properties ��323

Methods ��324

Table of ConTenTsTable of ConTenTs

xiii

API Reference: SpeechSynthesisEvent ���324

Properties ��324

Methods ��325

API Reference: SpeechSynthesisVoice ���325

Properties ��326

API Reference: SpeechGrammar ��326

Constructor ��327

Properties ��327

API Reference: SpeechGrammarList ���328

Constructor ��328

Properties ��328

Methods ��329

Index ���331

Table of ConTenTsTable of ConTenTs

xv

About the Author

Alex Libby is a front-end engineer and seasoned computer book author

who hails from England. His passion for all things open source dates

back to the days of his degree studies, where he first came across web

development, and he has been hooked ever since. His daily work involves

extensive use of JavaScript, HTML, and CSS to manipulate existing web site

content. Alex enjoys tinkering with different open source libraries to see

how they work. He has spent a stint maintaining the jQuery Tools library

and enjoys writing about open source technologies, principally for front-

end UI development.

xvii

About the Technical Reviewer

Kenneth Fukizi is a software engineer, architect, and consultant with

experience in coding on different platforms internationally. Prior to

dedicated software development, he worked as a lecturer for a year and

was then head of IT in different organizations. He has domain experience

working with technology for companies in a wide variety of sectors. When

he’s not working, he likes reading up on emerging technologies and strives

to be an active member of the software community.

xix

Acknowledgments

Writing a book can be a long but rewarding process; it is not possible to

complete it without the help of other people. I would like to offer a huge

thanks to my editors – in particular, Nancy Chen and Louise Corrigan.

My thanks also to Kenneth Fukizi as my technical reviewer and James

Markham for his help during the process. All four have made writing this

book a painless and enjoyable process, even with the edits!

My thanks also to my family for being understanding and supporting

me while writing – I frequently spent lots of late nights writing alone, so

their words of encouragement have been a real help in getting past those

bumps in the road and producing the finished book that you now hold in

your hands.

xxi

Introduction

Introducing the HTML5 Web Speech API is for people who want to quickly

add speech capabilities natively in the browser, without the need for extra

libraries or costly subscription to speech service providers.

First introduced by the W3C in 2012, the HTML5 Web Speech API

consists of two APIs for speech recognition and synthesis. It is designed to

add speech capabilities natively in the browser, using a clean, consistent

API that allows us developers to focus on providing a next-level interface

and superior user experience, without having to worry about the

mechanics of how the API operates.

Over the course of this book, I’ll take you on a journey through using

the API, showing you how easy it is to quickly add speech capabilities to

your projects, with the minimum of fuss. We’ll focus on topics such as

making our browsers recite anything from a simple phrase to performing

actions based on verbal commands, with lots of simple exercises to help

develop your skills with this API.

Introducing the HTML5 Web Speech API is for the web site developer

who is keen to learn how to quickly add in speech capabilities to any

project, without the need for extra libraries or costly services. It’s perfect

for those who work in Agile development, where time is of the essence and

developers can produce reusable code that makes use of the API within

their chosen framework or development process.

1© Alex Libby 2020
A. Libby, Introducing the HTML5 Web Speech API,
https://doi.org/10.1007/978-1-4842-5735-7_1

CHAPTER 1

Getting Started

 Introducing the APIs
“Hey Alexa, what time is it…?”

In an age of smart assistant (SA) devices, I’ll bet that those words will be

uttered dozens of times a day worldwide – it does not matter where; smart

assistants have become immensely popular. Indeed, Juniper Research has

forecasted that the number of smart assistants will triple from 2.5 billion

in use at the end of 2018 to 8 billion by 2023. Just imagine – changing

TV channels by voice (already possible, and which alone is expected to

increase 120% over the next five years) or simply doing mundane tasks like

reordering goods from the likes of Amazon.

But I digress. Smart assistants are great, but what if we could use them

to control functionality in our online web site or application? “How?” I hear

you ask. Well, let me introduce the HTML5 Speech API; it uses the same

principle as smart assistants, to turn speech into text and vice versa. It’s

available now for use in the browser, albeit still somewhat experimental.

Initially created back in 2012, but only really coming into full use now,

this experimental API can be used to perform all manner of different tasks

by the power of voice. How about using it to add products to a shopping

cart and pay for them – all done remotely by voice? Adding in speech

capabilities opens up some real possibilities for us. Over the course of this

2

book, we’ll explore a handful of these in detail, to show you how we can

put this API to good use. Before we do so, there is a little housekeeping

we must take care of first. Let’s cover this off now, before we continue our

journey through this API.

If you would like to get into the detail of how this API has been
constructed and the standards that browser vendors must follow,
then take a look at the W3C guidelines for this API at https://
wicg.github.io/speech-api/. Beware – it makes for very dry
reading!

 Setting up our development environment
I’m pretty sure that no one likes admin, but in this instance, there are a

couple of tasks we have to perform before we can use the API.

Don’t worry – they are straightforward. This is what we need to do:

• The API only works in a secure HTTPS environment

(yes, don’t even try running it under HTTP – it doesn’t

work) – this means we need to have some secure web

space we can use for the purposes of our demos. There

are several ways to achieve this:

• The simplest is to use CodePen (https://www.

codepen.io) – you will need to create an account

to save work, but it is free to sign up if you don’t

already have an account you can use.

• Do you have any web space available for another

project, which could be used temporarily? As long

as it can be secured under HTTPS, then this will

work for our demos.

ChAPter 1 GettInG StArted

https://wicg.github.io/speech-api/
https://wicg.github.io/speech-api/
https://www.codepen.io
https://www.codepen.io

3

• If you happen to be a developer who uses an MS

tech stack, you can create an ASP.Net Core web

application, with “Configure for HTTPS” selected,

and click OK when prompted to trust the self-

signed certificate, upon running the application.

This will work fine for the demos throughout this

book.

• You can always try running a local web server – there

are dozens available online. My personal favorite is

MAMP PRO, available from https://www.mamp.info.

It’s a paid-for option that runs on Windows and Mac;

it makes generating the SSL certificates we need to use

a cinch. Alternatively, if you have the likes of Node.

js installed, then you can use one such as local web

server (https://github.com/lwsjs/local-web-

server), or create your own if you prefer. You will need

to create a certificate for it and add it to your certificate

store – a handy method for creating the certificate is

outlined at https://bit.ly/30RjAD0.

• The next important task is to avail yourself of a suitable

microphone – after all, we clearly won’t get very far

without one! You may already have one; if not, pretty

much any microphone will work fine. My personal

preference is to use a microphone/headset combo, as

you might for talking over Skype. You should be able to

pick up a relatively inexpensive one via Amazon or your

local audio store.

ChAPter 1 GettInG StArted

https://www.mamp.info
https://github.com/lwsjs/local-web-server
https://github.com/lwsjs/local-web-server
https://bit.ly/30RjAD0

4

A word of note If you are a laptop user, then you can use any
microphone that is built-in to your laptop. the drawback is that
reception won’t be so good – you might find yourself having to lean
forward an awful lot for the best reception!

• For all of our demos, we’ll use a central project folder –

for the purposes of this book, I’ll assume you’ve created

one called speech and that it is stored at the root of

your C: drive. The exact location is not critical; if you’ve

chosen a different location, then you will need to adjust

the location accordingly when we come to complete

the demos.

Excellent! With that admin now out of the way, we can focus on the

interesting stuff! The HTML5 Speech API (or “the API”) comes in two parts:

The first part is the SpeechSynthesis API, which takes care of reciting back

any given text as speech. Second, in comparison – and to coin a phrase –

the SpeechRecognition API does pretty much what it says in the name.

We can say a phrase, and provided it matches preconfigured text it can

recognize, it will perform any number of tasks that we assign on receipt of

that phrase.

We could dive into how they work, but I know you’re itching to get

stuck in, right? Absolutely. So without further ado, let’s run through two

quick demos, so you get a flavor for how the API works before we use it in

projects later in this book.

Don’t worry though about what it all means – we will absolutely

explore the code in detail after each exercise! We’ll look at both in turn,

starting first with the SpeechSynthesis API.

ChAPter 1 GettInG StArted

5

 Implementing our first examples
Although both APIs require a bit of configuration to make them work,

they are relatively easy to set up; neither requires the use of any specific

frameworks or external libraries for basic operation.

To see what I mean, I’ve put together two quick demos using

CodePen – they demonstrate the basics of what is needed to get started

and will form code that we will use in projects later in this book. Let’s take

a look at each, in turn, starting with reading back text as speech, using the

SpeechSynthesis API.

 Reading back text as speech
Our first exercise will keep things simple and make use of CodePen to

host our code; for this, you will need to create an account if you want to

save your work for future reference. If you’ve not used CodePen before,

then don’t worry – it’s free to sign up! It’s a great way to get started with the

API. We will move to using something more local in subsequent demos.

All of the code used in examples throughout this book is available in
the code download that accompanies this book. We will use a mix
of eCMAScript 2015 and vanilla JavaScript in most demos; you may
need to adjust if you want to use a newer version of eCMAScript.

ChAPter 1 GettInG StArted

6

READING BACK TEXT

Assuming you’ve signed up and now have a CodePen account you can use,

let’s make a start on creating our first example:

 1. First, go ahead and fire up your browser, then navigate to

https://codepen.io, and sign in with your account details.

Once done, click Pen on the left to create our demo.

 2. We need to add in the markup for this demo – for this, go ahead

and add the following code into the htML window:

<link href="https://fonts.googleapis.com/css?family=Open+

Sans&display=swap" rel="stylesheet">

<div id="page-wrapper">

 <h2>Introducing HTML5 Speech API: Reading Text back as

Speech</h2>

 <p id="msg"></p>

 <input type="text" name="speech-msg" id="speech-msg">

 <div class="option">

 <label for="voice">Voice</label>

 <select name="voice" id="voice"></select>

 <button id="speak">Speak</button>

 </div>

</div>

 3. Our demo will look very ordinary if we run it now – let alone

the fact that it won’t actually work as expected! We can easily

fix this. Let’s first add in some rudimentary styles to make our

demo more presentable. there are a few styles to add in, so we

will do it block by block. Leave a line between each block, when

you add it into the demo:

*, *:before, *:after { box-sizing: border-box; }

ChAPter 1 GettInG StArted

https://codepen.io

7

html { font-family: 'Open Sans', sans-serif; font-size:

100%; }

#page-wrapper { width: 640px; background: #ffffff;

padding: 16px; margin: 32px auto; border-top: 5px solid

#9d9d9d; box- shadow: 0 2px 10px rgba(0,0,0,0.8); }

h2 { margin-top: 0; }

 4. We need to add in some styles to indicate whether our browser

supports the API:

#msg { font-size: 14px; line-height: 22px; }

#msg.not-supported strong { color: #cc0000; }

#msg > span { font-size: 24px; vertical-align: bottom; }

#msg > span.ok { color: #00ff00; }

#msg > span.notok { color: #ff0000; }

 5. next up are the styles for the voice drop-down:

#voice { margin: 0 70px 0 -70px; vertical-align: super; }

 6. For the API to have something it can convert to speech, we

need to have a way to enter text. For this, add in the following

style rules:

input[type="text"] { width: 100%; padding: 8px;

font-size: 19px;

border-radius: 3px; border: 1px solid #d9d9d9;

box-shadow: 0 2px 3px rgba(0,0,0,0.1) inset; }

label { display: inline-block; float: left; width: 150px; }

.option { margin: 16px 0; }

 7. the last element to style is the Speak button at the bottom-right

corner of our demo:

ChAPter 1 GettInG StArted

8

button { display: inline-block; border-radius: 3px;

border: none; font-size: 14px; padding: 8px 12px;

background: #dcdcdc;

border-bottom: 2px solid #9d9d9d; color: #000000;

-webkit-font- smoothing: antialiased; font-weight: bold;

margin: 0; width: 20%; text-align: center; }

button:hover, button:focus { opacity: 0.75; cursor:

pointer; }

button:active { opacity: 1; box-shadow: 0 -3px 10px

rgba(0, 0, 0, 0.1) inset; }

 8. With the styles in place, we can now turn our attention to

adding the glue to make this work. I don’t mean that literally,

but in a figurative sense! All of the code we need to add goes in

the JS window of our CodePen; we start with a check to see if

our browser supports the API:

var supportMsg = document.getElementById('msg');

if ('speechSynthesis' in window) {

 supportMsg.innerHTML = '☑

 Your browser supports speech

synthesis.';

} else {

 supportMsg.innerHTML = '☒</

span> Sorry your browser does not support</

strong> speech synthesis.';

 supportMsg.classList.add('not-supported');

}

 9. next up, we define three variables to store references to

elements in our demo:

var button = document.getElementById('speak');

var speechMsgInput = document.getElementById('speech-msg');

var voiceSelect = document.getElementById('voice');

ChAPter 1 GettInG StArted

9

 10. When using the API, we can relay speech back using a variety

of different voices – we need to load these into our demo

before we can use them. For this, go ahead and drop in the

following lines:

function loadVoices() {

 var voices = speechSynthesis.getVoices();

 voices.forEach(function(voice, i) {

 var option = document.createElement('option');

 option.value = voice.name;

 option.innerHTML = voice.name;

 voiceSelect.appendChild(option);

 });

}

loadVoices();

window.speechSynthesis.onvoiceschanged = function(e) {

 loadVoices();

};

 11. We come to the real meat of our demo – this is where we see

the text we add be turned into speech! For this, leave a line

after the previous block, and add in the following code:

function speak(text) {

 var msg = new SpeechSynthesisUtterance();

 msg.text = text;

 if (voiceSelect.value) {

 msg.voice = speechSynthesis.getVoices()

.filter(function(voice) {

 return voice.name == voiceSelect.value;

 })[0];

 }

 window.speechSynthesis.speak(msg);

}

ChAPter 1 GettInG StArted

10

 12. We’re almost there. the last step is to add in an event handler

that fires off the conversion from text to speech when we hit

the Speak button:

button.addEventListener('click', function(e) {

 if (speechMsgInput.value.length > 0) {

 speak(speechMsgInput.value);

 }

});

 13. Go ahead and save your work. If all is well, we should see

something akin to the screenshot shown in Figure 1-1.

try then typing in some text and hit the Speech button. If all is working as

expected, then you will hear your words recited back to you. If you choose

a voice from the drop-down, you will hear your words spoken back with

an accent; depending on what you type, you will get some very interesting

results!

Figure 1-1. Our completed text-to-speech demo

ChAPter 1 GettInG StArted

11

A completed version of this demo can be found in the code download
that accompanies this book – it’s in the readingback folder.

At this stage, we now have the basic setup in place to allow our browser

to read back any text we desire – granted it might still sound a little robotic.

However, this is to be expected when working with an API that is still

somewhat experimental!

This aside, I’ll bet there are two questions on your mind: How does this

API function? And – more to the point – is it still safe to use, even though

it is still technically an unofficial API? Don’t worry – the answers to these

questions and more will be revealed later in this chapter. Let us first start

with exploring how our demo works in more detail.

 Understanding what happened

If we take a closer look at our code, you might be forgiven for thinking it

looks a little complex – in reality though, it is very straightforward.

We start with some simple HTML markup and styling, to display an

input box on the screen for the content to be replayed. We also have a

drop-down which we will use to list the available voices. The real magic

happens in the script that we’ve used – this starts by performing a check to

see if our browser supports the API and displays a suitable message.

Assuming your browser does support the API (and most browsers from

the last 3–4 years will), we then define a number of placeholder variables

for various elements on the page. We then (through the loadVoices()

function) iterate through the available voices before populating the

drop-down with the results. Of particular note is the second call to

loadVoices(); this is necessary as Chrome loads them asynchronously.

ChAPter 1 GettInG StArted

12

It’s important to note that the extra voices (which start with
“Chrome…”) are added as part of the API interacting with Google and
so only appear in Chrome.

If we then jump to the end of the demo for a moment, we can see an

event handler for the button element; this calls the speak() function that

creates a new utterance of the SpeechSynthesisUtterance() object that

acts as a request to speak. It then checks to make sure we’ve selected a

voice, which we do using the speechSynthesis.getVoices() function. If a

voice is selected, then the API queues the utterance and renders it as audio

via your PC’s speakers.

Okay, let’s move on. We’ve explored the basics of how to render text as

speech. This is only half of the story though. What about converting verbal

content into text? This we can do by using the SpeechRecognition API – it

requires a little more effort, so let’s dive into the second of our two demos

to see what’s involved in making our laptops talk.

 Converting speech to text
The ability to vocalize content through our PC’s speakers (or even

headphones) is certainly useful, but a little limiting. What if we can ask

the browser to perform something using the power of our voice? Well, we

can do that using the second of the two Speech APIs. Let me introduce the

SpeechRecognition API!

This sister API allows us to speak into any microphone connected to

our PC, for our browser to perform any manner of preconfigured tasks,

from something as simple as transcribing tasks to searching for the nearest

restaurant to your given location. We’ll explore some examples of how to

use this API in projects later in this book, but for now, let’s implement a

simple demo so you can see how the API works in action.

ChAPter 1 GettInG StArted

13

I would not recommend using Firefox when working with demos
that use the Speech recognition API; although documentation on the
Mozilla developer network (Mdn) site suggests it is supported, this
isn’t the case, and you will likely end up with a “Speechrecognition is
not a constructor” error in your console log.

“WHAT DID I SAY?”

Let’s crack on with our next exercise:

 1. We’ll start by browsing to https://www.codepen.io and

then clicking Pen. Make sure you’ve logged in with the account

you created back in the first exercise.

 2. Our demo makes use of Font Awesome for the microphone icon

that you will see in use shortly – for this, we need to add in

references for two CSS libraries. Go ahead and click Settings ➤

CSS. then add in the following links into the spare slots at the

bottom of the dialog box:

https://use.fontawesome.com/releases/v5.0.8/css/

fontawesome.css

https://use.fontawesome.com/releases/v5.0.8/css/solid.css

 3. next, switch to the htML pane and add the following markup

which will form the basis for our demo:

<link href="https://fonts.googleapis.com/css?family=Open+

Sans&display=swap" rel="stylesheet">

<div id="page-wrapper">

 <h2>Introducing HTML5 Speech API: Converting Speech to

Text</h2>

ChAPter 1 GettInG StArted

https://www.codepen.io

14

 <button>

 <i class="fa fa-microphone"></i> Click and talk to me!

 </button>

 <div class="response">

 </div>

 <p class="output">You said: <strong class="output_

result"></p>

 Spoken voice: US English

</div>

 4. On its own, our markup certainly won’t win any awards for

style! to fix this, we need to add in a few styles to make our

demo look presentable. For this, add the following rules into the

CSS pane, starting with some basic rules to style the container

for our demo:

*, *:before, *:after { box-sizing: border-box; }

html { font-family: 'Open Sans', sans-serif; font-size:

100%; }

#page-wrapper { width: 640px; background: #ffffff;

padding: 16px; margin: 32px auto; border-top: 5px solid

#9d9d9d; box- shadow: 0 2px 10px rgba(0,0,0,0.8); }

h2 { margin-top: 0; }

 5. next come the rules we need to style our talk button:

button { color: #0000000; background: #dcdcdc; border-

radius: 6px; text-shadow: 0 1px 1px rgba(0, 0, 0, 0.2);

font-size: 19px; padding: 8px 16px; margin-right: 15px; }

button:focus { outline: 0; }

input[type=text] { border-radius: 6px; font-size: 19px;

padding: 8px; box-shadow: inset 0 0 5px #666; width:

300px; margin-bottom: 8px; }

ChAPter 1 GettInG StArted

15

 6. Our next rule makes use of Font Awesome to display a suitable

microphone icon on the talk button:

.fa-microphone:before { content: "\f130"; }

 7. this next set of rules will style the output once it has been

transcribed, along with the confidence level and the voice

characterization used:

.output_log { font-family: monospace; font-size: 24px;

color: #999; display: inline-block; }

.output { height: 50px; font-size: 19px; color: #000000;

margin-top: 30px; }

.response { padding-left: 260px; margin-top: -35px;

height: 50px}

.voice { float: right; margin-top: -20px; }

 8. Okay, so we have our markup in place, and it looks reasonably

OK. What’s missing? Ah yes, the script to make it all work! For

this, go ahead and add in the following code to the JS pane.

We have a good chunk of code, so let’s break it down block by

block, starting with some variable declarations:

'use strict';

const log = document.querySelector('.output_log');

const output = document.querySelector('.output_result');

const SpeechRecognition = window.SpeechRecognition ||

window.webkitSpeechRecognition;

const recognition = new SpeechRecognition();

recognition.interimResults = true;

recognition.maxAlternatives = 1;

ChAPter 1 GettInG StArted

16

 9. next up is an event handler that triggers the microphone. Leave

a blank line and then add the following code:

document.querySelector('button').

addEventListener('click', () => {

 let recogLang = 'en-US';

 recognition.lang = recogLang.value;

 recognition.start();

});

 10. When using the Speech recognition API, we trigger a number

of events to which we must respond; the first one recognizes

when we start talking. Go ahead and add the following lines

into the JS pane of our CodePen demo:

recognition.addEventListener('speechstart', () => {

 log.textContent = 'Speech has been detected.';

});

 11. Leave a blank line and then add in these lines – this event

handler takes care of recognizing and transcribing anything we

say into the microphone, as well as calculating a confidence

level for accuracy:

recognition.addEventListener('result', (e) => {

 log.textContent = 'Result has been detected.';

 let last = e.results.length - 1;

 let text = e.results[last][0].transcript;

 output.textContent = text;

 log.textContent = 'Confidence: ' + (e.results[0][0].

confidence * 100).toFixed(2) + "%";

});

ChAPter 1 GettInG StArted

17

 12. We’re almost done, but have two more event handlers to add

in – these take care of switching off the recognition API when

we’re done and also displaying any errors on screen if any

should appear. Leave a line and then drop in the following code:

recognition.addEventListener('speechend', () => {

 recognition.stop();

});

recognition.addEventListener('error', (e) => {

 output.textContent = 'Error: ' + e.error;

});

 13. At this point, we’re done with editing code. Go ahead and hit the

Save button to save our work.

A completed version of this demo can be found in the code download
that accompanies this book – it’s in the whatdidIsay folder.

At this point, we should be good to run our demo, but if you were to

do so, it’s likely that you won’t get any response. How come? The simple

reason is that we have to grant permission to use our PC’s microphone

from within the browser. It is possible to activate it via the Settings entry

in the site’s certificate details, but it’s not the cleanest method. There is

a better way to prompt for access, which I will demonstrate in the next

exercise.

 Allowing access to the microphone
When using the Speech API, there is one thing we must bear in mind –

access to the microphone will by default be disabled for security reasons;

we must explicitly enable it before we can put it to use.

ChAPter 1 GettInG StArted

18

This is easy to do, although the exact steps will vary between

browsers – it involves adding a couple of lines of code to our demo to

request access to the microphone and changing a setting once prompted.

We’ll see how to do this in our next exercise, which assumes you are using

Chrome as your browser.

ADJUSTING PERMISSIONS

Let’s make a start on setting up permissions:

 1. First, go ahead and browse to the microphone settings in

Chrome, which you can get to via chrome://settings/

content/microphone. Make sure the slider against “Ask

before accessing…” is over to the right.

 2. In a separate tab, switch back to the Speechrecognition API

demo in CodePen that you created in the previous exercise;

look for this line:

const output = document.querySelector('.output_result');

 3. Leave a line blank below it and then add in this code:

navigator.mediaDevices.getUserMedia({ audio: true

}).then(function(stream) {

 4. Scroll down your code until you get to the end. then add in this

small block of code:

 })

.catch(function(err) {

 console.log(err);

});

ChAPter 1 GettInG StArted

19

 5. next, go ahead and click the drop-down arrow to the far right

of the JS pane. When it pops up, you will see an entry for tidy

JS. Click it to reformat the code correctly.

 6. Save the update and then refresh the page. If all is well, you will

see an icon appear at the end of the address bar (Figure 1-2).

 7. Click it. Make sure the “Always allow https://codepen.

io…” option is selected. then click done.

 8. refresh the window. the icon will change to a solid black one,

without the forbidden cross symbol showing.

try clicking the “Click and talk to me!” button and then talking into your

microphone. If all is well, we should see something akin to the screenshot

shown in Figure 1-3, where it displays the result of a spoken test phrase,

along with the confidence level.

Figure 1-2. Microphone support has been added, but is disabled…

Figure 1-3. The results of talking into our microphone…

ChAPter 1 GettInG StArted

https://codepen.io
https://codepen.io

20

When talking, did you notice how the red dot/circle appears in the

browser window tab (as illustrated in Figure 1-4, overleaf)? This indicates

that the microphone is active and will record any spoken words.

If we hit the “Click and talk to me!” button again, this red circular

icon will disappear, to signify that the microphone has been turned

off. In our previous demo, we made use of navigator.mediaDevices.

getUserMedia() to achieve this – this is something we will likely have to do

for any site where we implement speech, as we can’t be sure that users will

have enabled their microphone!

If you would like to know more about using navigator.mediaDevices.
getUserMedia(), there is a useful article on the Mozilla developer
network site at https://developer.mozilla.org/en- US/
docs/Web/API/MediaDevices/getUserMedia.

 Setting access: An alternative method
There is, however (as with many things in life), a different way to crack

this nut; it doesn’t require code, but it isn’t as clean a method. It involves

setting the right permissions as we did before, but this time going to a site

that we know is enabled for microphone use.

Figure 1-4. The red dot signifies an active microphone

ChAPter 1 GettInG StArted

https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia

21

ENABLING THE MICROPHONE: AN ALTERNATIVE METHOD

this method assumes the use of Chrome, although it is likely a similar method

will be available for Firefox and other browsers:

 1. In a separate tab, browse to chrome://settings/content/

siteDetails?site=https%3A%2F%2Fcodepen.io and

then make sure that the entry for the microphone is set to Ask.

 2. revert back to the tab where your CodePen demo is running,

and refresh the window. You should see a prompt appear, as

indicated in Figure 1-5, overleaf.

Over the course of the last few pages, we worked through three

exercises. It’s important to note though that when working with this API,

there will be a little extra effort required. In addition to initiating the

request for the API, we’ve also had to add in code to enable access to the

microphone. We’ll revisit the subject (and security implications) of using it

a little later on, but for now, let us review the code we used in the last two

exercises, in more detail.

Figure 1-5. Requesting access to the microphone from the browser

ChAPter 1 GettInG StArted

22

 Breaking apart our code

As in the previous text-to-speech demo, we start with some basic markup

and styling to give us a button we can use to activate recording our voice

and two placeholder slots for the converted text and confidence level.

The magic, however, happens in the JavaScript code that we’ve added

in. We start by defining references to the .output_ elements within our

markup. Next, we define window.SpeechRecognition as a reference

to the API; note that we have it set as an OR statement, to ensure we

cover those browsers that still require vendor prefix support. As part of

this, we also set two attributes: recognition.interimResults is set to

true to enable the display of text as it is being converted from speech. The

other, recognition.maxAlternatives, is set to 1 to display a maximum

of one alternative word, when it has been recognized by the speech

recognition service.

It’s important to note that the bulk of our JavaScript code will be
wrapped inside a navigator.mediaDevices.getUserMedia()
block, so it runs once we’ve enabled access to the microphone.

Our code then contains a set of event handlers, to recognize different

events: The first is fired by clicking the “Click and talk to me!” button.

This sets the language to be used (US English) and starts the recognition

service. The second event handler, speechstart, takes care of recognizing

when we start talking and transcribing any spoken content. The final two

(result and error) are fired when we stop talking or if an error is thrown,

such as access to the microphone that has been blocked. In the final part of

this extended demo, we then explore a couple of options for enabling the

microphone; we discuss how the code route will be preferable for users.

Okay, let’s move on. Now that we’ve been introduced to both of the

APIs, it’s time we delved into a little of the theory, to see how these APIs

ChAPter 1 GettInG StArted

23

operate! We’ll examine each API in more detail in the next chapter, but for

now, let’s answer two critical questions: How well are these APIs supported

(and can I provide fallback support)? How do I manage the security

implications of accessing someone’s microphone remotely?

 Allowing for browser support
Cast your mind back to the start of this chapter – remember how I

mentioned the words “experimental API”? Yes, it has to be said that these

APIs are yet to reach official status. However, before you run to the hills

thinking “What have I let myself in for?”, it’s not as bad as it sounds! Let me

explain what I mean.

It is true that the API is still experimental – we can make allowances

for this with careful research and by working on the basis that we only

enhance an existing service, not replace it. As a start, our first port of call

should be a web site such as CanIUse.com; a quick check shows that the

SpeechSynthesis API has excellent support, at least on desktop (Figure 1- 6).

In contrast, though, support for the Speech Recognition API is not so

advanced, as indicated in Figure 1-7.

Figure 1-6. Browser support for the Speech Synthesis API

ChAPter 1 GettInG StArted

24

We can clearly see that support isn’t so advanced as for the Speech

Synthesis API, yet the chart is hiding a secret: Safari does indeed support

both APIs! Although a site such as CanIUse.com is a good starting point, it

is only ever as accurate as the information it is based on. It does indeed pay

to check support with each browser vendor as much as possible; otherwise,

we may base a future financial information on inaccurate information.

now, I hear you ask, “What about mobile?” Well, support for both APIs
is still being developed; although it has yet to extend to all platforms,
it nevertheless covers the key platforms of Android (for both Chrome
and Firefox) and Samsung.

Now that we’re aware of the level of support each browser provides,

what about those browsers which don’t support either API? Is there a

fallback option or some other alternative we can use…?

 Providing fallback support

Well, the answers to both questions at the end of that discussion aren’t as

straightforward as we might like. Let me explain what I mean.

At the heart of this question lies one important point – the Speech

Synthesis API relies on using Google’s neural AI capabilities to decode and

return text as speech in the chosen style. So what does this mean for us?

Figure 1-7. Browser support for the Speech Recognition API
Source: https://caniuse.com/#search=speech

ChAPter 1 GettInG StArted

https://caniuse.com/#search=speech

25

The reliance on Google for the Synthesis API means that support will be

limited to newer browsers only; this covers all recent desktop browsers,

except Internet Explorer (IE). For those of you supporting mobile devices,

it is only available for Chrome or Firefox for Android, Samsung Internet,

and two smaller specialist browsers.

At the moment, there isn’t really a suitable fallback in the strictest

sense. While for some this may be disappointing, there is an argument

that says we should be looking forward and not backward when it comes

to browser support. That IE doesn’t offer support for the Speech Synthesis

API will come as no surprise to many; those mobile platforms that don’t

support the API (such as Android Browser) add up to around 5% of total

usage, so this can be safely discounted. There is equally an argument that

says we should not rely on either API for core functionality in our site or

application; speech provision should enhance the basic service and not

replace it.

If we switch to the Speech Recognition API though, support is a

different story – support is still very much in its early stages. It’s limited

to recent versions of Edge, Firefox, and Chrome which are supported

for desktop; the bulk of support in the mobile world falls to Chrome for

Android. The same arguments vis-à-vis looking forward apply here too;

APIs such as Speech should be considered as a tool for progressively

enhancing the experience.

Talking of progressive enhancement, there are a couple of options we

can consider. These are

• ResponsiveVoice – this is a commercial service available

from https://responsivevoice.com; it provides extra

support such as better accessibility for navigation, but

this comes at a price of USD39 a month, which will

need to be factored into any operational costs.

ChAPter 1 GettInG StArted

https://responsivevoice.com

26

• Annyang is a free library by Tal Ater, which is designed

to make the Speech Recognition API easier to use; this

is available under the MIT license from https://www.

talater.com/annyang/.

The downside of these though is that they will only progressively

enhance service provided by a browser that already supports the API; this

lends extra weight to the argument that we should encourage people to use

newer browsers where possible!

 Understanding security concerns
Over the course of this chapter, we’ve been introduced to the Speech API

for the first time and seen the basics of how it works. Yet, I’m sure (as with

any new technology) there is one burning question we have yet to ask:

what about security and privacy? With the presence of the European-

wide GDPR legislation now in effect, the question of privacy has come to

the fore; this is no more important a consideration than when using the

Speech API.

The main consideration is getting permission to use the microphone

when working with the Speech API; this used to be every time a request

is made in a nonsecure HTTP environment. There was a time when

this wasn’t necessary, but dubious web sites began to exploit this with

advertising and scams. As a result, Google (and now others) enforces

the need to use the API in an HTTPS-secured environment and that

permission to use the microphone has to be given explicitly by the user.

If you want to read up on the technical reasons for this, details are
given in the official bug report on this vulnerability, which is listed
at https://bugs.chromium.org/p/chromium/issues/
detail?id=812767

ChAPter 1 GettInG StArted

https://www.talater.com/annyang/
https://www.talater.com/annyang/
https://bugs.chromium.org/p/chromium/issues/detail?id=812767
https://bugs.chromium.org/p/chromium/issues/detail?id=812767

27

As a user, you may only get asked once for permission on a fully

secured site, before audio can be captured; subsequent uses in the same

session will utilize the same permission until the page has been refreshed.

For some, this might be seen as a vulnerability, as a secure web page

can effectively record any content, once it has been authorized. This is

compounded by the fact that the Chrome API interacts with Google, so will

not stay within the confines of your browser!

So can we do anything to help maintain security and our privacy?

There are a few things we can bear in mind when working with the APIs:

• Although any page using the Speech Recognition API in

Chrome will interact with Google, the only information

that is sent to Google is an audio recording, the domain

of your web site, your default browser language, and

current language settings of your web site (no cookies

are sent). If the Speech Recognition API is used in a

different browser, this does not interact with Google.

• If you are using the Speech Recognition API, make

sure you do not create any event handlers that contain

sensitive information, which could potentially be sent

to Google. Ideally this information should be stored

locally, and any command sent is effectively a key to

unlock access.

• The entire page will have access to the output of the

audio capture, so if your page or site is compromised,

the data from the audio instance can be read. It makes

it incumbent on us to ensure that we are securing

access (which has become the default for many

sites now), but also that we are using good-quality

certificates on a properly secured and updated server.

ChAPter 1 GettInG StArted

28

• The API (and particularly the Speech Recognition API)

is still very much in a state of flux; it is possible that

Google’s role could change or be discontinued at some

point in the future. Nothing can be considered official

until the W3C has granted official recognition to using

the APIs in browsers.

• At this time, I would recommend carefully checking

through your site’s analytics, to explore which browsers

are being used that support the API. If there is sufficient

demand, then you can consider starting to add

functionality, but as mentioned earlier, I would strongly

recommend taking a careful and measured approach,

so that you maintain a good experience for customers.

Okay, certainly some food for thought there! Hopefully this won’t have

put you off; as with any new technology, it’s important to embrace it, but

to take a measured approach, rather than jumping in blindly! Throughout

the course of this book, we will dig into the API in more detail and use it in

a number of example projects, so you get a feel for how it can be used in a

practical context. Just imagine: how about using the API to add products to

a shopping cart and pay for them, all with the power of your voice?

 Summary
In an age of modern smart assistants (such as Amazon’s Alexa), the ability

to create web applications that can be controlled using the power of voice

opens up some really interesting possibilities. We must equally consider

how best to make use of the API, particularly with privacy being at the

forefront of users’ minds! Over the course of this chapter, we’ve started to

take a look at the Speech API in detail; let’s take a moment to review what

we have learned in more detail.

ChAPter 1 GettInG StArted

29

We kicked off by introducing both the Speech Synthesis and

Recognition APIs, before taking a quick look at what is required to start

developing with these APIs.

We then moved onto implementing our first examples - we started

with reading back text as speech, before switching to creating an example

using the Speech Recognition API. We then talked briefly about how to

enable access to the microphone for the second of these two APIs, before

exploring some of the concerns about providing support and allowing for

privacy and security when using the APIs.

Phew! We’ve only just gotten started, folks. Hope you’re ready to really

get stuck in to the detail! Up next, we’ll take a look at the API in more detail

while creating a more practical example and exploring how we can provide

more support for different languages. As one might say in Dutch, Laten we

doorgaan, or let’s crack on…!

ChAPter 1 GettInG StArted

31© Alex Libby 2020
A. Libby, Introducing the HTML5 Web Speech API,
https://doi.org/10.1007/978-1-4842-5735-7_2

CHAPTER 2

Exploring the APIs
in More Detail

 Understanding the API terminology
“Great! My PC can now talk and recognize my voice. But
what’s the SpeechSynthesisUtterance keyword that I see in the
code mean…?”

It’s a good question. Now that you’ve seen the API in operation, I’ll bet

you’re eager to understand how it hangs together, right? We’ve only

touched on the basics of making our PC speak or recognize our voice.

There is much more we can do!

Over the course of this chapter, we’re going to dive into some of the

theory behind the API, before using it (or them – depending on how you

see it), to create something a little more practical. At the same time, we’ll

also give our code a little international flavor – yes, we are not limited

to speaking just English! All will become clearer later in the chapter, but

for now, let’s start by breaking down the Speech Recognition API into its

constituent parts.

32

 Exploring the Speech Synthesis API
Take a look back at the code we created for our first demo, where our PC

replayed some sample text as speech. At first glance, it looks like we need a

fair chunk of code to achieve this, right? What if I said you could do this in

as little as one line of code…?

Yes, you heard me correctly. The crux of that demo centers around this

line of code:

window.speechSynthesis.speak(msg);

where we invoke a call to speechSynthesis and ask it to speak the value of

msg. By itself, this won’t work, but if we alter it a little, to this:

speechSynthesis.speak(new SpeechSynthesisUtterance('Hello, my

name is [insert your name here]'))

it will work fine when executed in a browser console (you may need

to allow pasting in the console, if you’re using Firefox). Go on, put

your name in as indicated, and give it a try! However, there is more

we can do with the API than this simple one-liner. What about this

SpeechSynthesisUtterance() I see in the code or the call to getVoices()?

Well, one is an object and the other a method. Let’s dive in and see how

this API works in more detail.

 Breaking apart the API
At the core of the Speech Recognition API is the SpeechSynthesis

interface; this is our interface into the speech service. We can use a host

of methods to control activity, but before we do so, we must first define

the SpeechSynthesisUtterance object. This object represents a speech

request, into which we pass a string that the browser should read aloud:

const utterance = new SpeechSynthesisUtterance('Hey')

Chapter 2 exploring the apis in More Detail

33

Once this has been defined, we can use it to tweak individual speech

properties, such as those listed in Table 2-1, with a more complete list in

the Appendix at the back of this book.

If we put this together into a simple example that we can run in a

console session (not forgetting to add our name as indicated!), it would

look something like this:

const utterance = new SpeechSynthesisUtterance('Hey, my name is

[insert your name here]')

utterance.pitch = 1.5

utterance.volume = 0.5

utterance.rate = 8

speechSynthesis.speak(utterance)

We can then use the speak(), pause(), resume(), or cancel()

method to control the SpeechSynthesis object.

Table 2-1. Properties of the SpeechSynthesisUtterance object

Property Purpose

utterance.rate sets the speed, accepts between [0.1 and 10], defaults to 1.

utterance.pitch sets the pitch, accepts between [0 and 2], defaults to 1.

utterance.volume sets the volume, accepts between [0 and 1], defaults to 1.

utterance.lang sets the language (values use a Best Current practice 47

[BCp47] language tag, like en-Us or it-it).

utterance.text instead of setting it in the constructor, you can pass it as a

property. text can be a maximum of 32767 characters.

utterance.voice: sets the voice (more on this in the following).

Chapter 2 exploring the apis in More Detail

34

In our next exercise, we’ll put this additional functionality to good use

and expand our original demo from Chapter 1, to include options that

provide finer control over the speech returned, as our next demo. When

we’re done, our demo will look like the screenshot shown in Figure 2-1.

The changes we will make will be relatively straightforward, but a good

indication of how we can start to develop our original. Let’s jump in and

take a look at what’s needed, in more detail.

 Improving our SpeechSynthesis demo
In our next exercise, we will add in three sliders to control levels such as

volume, pitch, and rate, along with buttons to pause and resume spoken

content.

Figure 2-1. Our updated SpeechSynthesis demo, with added controls

Chapter 2 exploring the apis in More Detail

35

ADDING FUNCTIONALITY

let’s make a start on adding the extra markup needed for our demo:

all of the code you need for this demo is in the updating speechsynthesis

folder, in the code download that accompanies this book.

 1. We’ll begin by browsing back to the demo you created in

Codepen, back in Chapter 1 – when there, make sure you log

in, so we can save changes to the demo.

 2. First, look for this block of code:

<div class="option">

 <label for="voice">Voice</label>

 <select name="voice" id="voice"></select>

 <button id="speak">Speak</button>

</div>

 3. immediately below this block (and before the closing page-

wrapper <div>), insert the following code – this adds in sliders

for volume, rate, and pitch levels:

<div class="option">

 <label for="volume">Volume</label>

 <input type="range" min="0" max="1" step="0.1"

name="volume" id="volume" value="1">

</div>

<div class="option">

 <label for="rate">Rate</label>

 <input type="range" min="0.1" max="10" step="0.1"

name="rate" id="rate" value="1">

</div>

Chapter 2 exploring the apis in More Detail

36

<div class="option">

 <label for="pitch">Pitch</label>

 <input type="range" min="0" max="2" step="0.1"

name="pitch" id="pitch" value="1">

</div>

 4. next, look for this line of code, and remove it from its current

location in the markup:

<button id="speak">Speak</button>

 5. scroll down to the end of the markup, and add in the following

three lines immediately before the closing </div>, as

highlighted:

 <button id="speak">Speak</button>

 <button id="pause">Pause</button>

 <button id="resume">Resume</button>

</div>

 6. With the markup in place, we need to make a couple of

adjustments to our styling; otherwise, elements will not appear

properly on the page. For this, go ahead and comment out or

remove the highlighted line of code from the #voice style rule:

#voice { /*margin-left: -70px;*/ margin-right: 70px;

vertical- align: super; }

 7. the range sliders we’ve added also need adjusting. go ahead

and add this in below the input[type="text"] rule, leaving

a blank line after that rule:

input[type="range"] { width: 300px; }

Chapter 2 exploring the apis in More Detail

37

 8. it’s time to add in the Javascript code to bring life to our new

buttons and range controls. look for the button variable

declaration and then add in the following code as highlighted:

var button = document.getElementById('speak');

var pause = document.getElementById('pause');

var resume = document.getElementById('resume');

 9. next up, leave a blank line and then add in the following

declarations – these are cache references to each of the range

sliders we are using to adjust volume, rate, and pitch:

// Get the attribute controls.

var volumeInput = document.getElementById('volume');

var rateInput = document.getElementById('rate');

var pitchInput = document.getElementById('pitch');

 10. scroll down until you see the onvoiceschanged event

handler. then leave a blank line just below it and add in this

new error handler:

window.speechSynthesis.onerror = function(event) {

 console.log('Speech recognition error detected: ' +

event.error);

 console.log('Additional information: ' + event.

message);

}

 11. the next block is the speak() function – inside it, look for

msg.text = text, then leave a blank line, and add in these

assignments:

// Set the attributes.

msg.volume = parseFloat(volumeInput.value);

msg.rate = parseFloat(rateInput.value);

msg.pitch = parseFloat(pitchInput.value);

Chapter 2 exploring the apis in More Detail

38

 12. We’re almost done. scroll to the end of the Js code section,

then leave a blank line, and add in these two event handlers.

the first takes care of pausing spoken content:

// Set up an event listener for when the 'pause' button

is clicked.

pause.addEventListener('click', function(e) {

 if (speechMsgInput.value.length > 0 && speechSynthesis.

speaking) {

 speechSynthesis.pause();

 }

});

 13. the second event handler is fired when clicking the resume

button – for this, leave a blank line after the previous handler,

and add in the following code:

// Set up an event listener for when the 'resume' button

is clicked.

resume.addEventListener('click', function(e) {

 if (speechSynthesis.paused) {

 speechSynthesis.resume();

 }

});

 14. We’re done with adding code. Make sure you save your work. if

all is working, we should see something akin to the screenshot

shown at the start of this exercise.

Try running the demo and adding something into the text box and

then altering the controls. With a little practice, we can produce some

interesting effects! Our code is now beginning to take shape and give us

something more complete we can use. Let’s quickly review the changes we

made to the code, in more detail.

Chapter 2 exploring the apis in More Detail

39

 Dissecting our code
We kicked off by adding in some markup to create suitable range sliders

for controlling volume, pitch, and rate settings – in all cases, we’re using

standard input elements and marking them as HTML5 range types. We

then followed this by adding in two new buttons – these are used to pause

and resume spoken content.

The real magic came when we added in our script. We started by

adding in references to the two new buttons we created; these are assigned

the IDs of pause and resume, respectively.

Next up, we then created references to the three range sliders; these

were declared as volumeInput, rateInput, and pitchInput, respectively.

We then added in declarations within the speak() function, to capture

the values set for these range sliders, before assigning them to the

SpeechSynthesisUtterance object, as appropriate. We then finished

off the demo by adding in three new event handlers – the first to render

any errors generated to the console, the second to pause content when

our computer is talking, and the third to resume it when a user clicks the

resume button.

That was pretty straightforward, right? This is only part of the changes

we can make though. What about the sister API, Speech Recognition? As

we will soon see, this one requires a different mind-set when it comes to

making changes. Let’s take a look in more detail at some of the changes we

can make to augment the overall experience.

 Exploring the Speech Recognition API
We’ve explored how we can make our browsers talk, but what about

recognizing what we say? In the demo we created back in Chapter 1, we

came across terms such as navigator.mediaDevices.getUserMedia(),

the speechstart event handler, and recognition.interimResults. What

do they all do?

Chapter 2 exploring the apis in More Detail

40

Well, the first isn’t strictly part of the SpeechRecognition API; we use

this to control access to a microphone from within the browser. However,

the other two are indeed part of the API; unlike the SpeechSynthesis API,

this is not one we can run as a one-liner in console. Instead, we need to

specify a few settings when working with this API – the key one being to

allow access to the microphone before we do anything!

 Breaking apart the API
At the heart of the SpeechRecognition API is the SpeechRecognition

interface; this controls access to the speech recognition interface within

the browser. We first have to define a reference to this; once in place, we

can create an instance of the API interface using this line of code:

const recognition = new SpeechRecognition();

It’s important to note that within Chrome, this API makes use of a

remote server-based recognition engine, to process all requests. This

means it will not work offline – for that, we must use a different browser,

such as Firefox.

We can then specify suitable values for settings such as

interimResults or maxAlternatives, along with appropriate event

handlers to stop or start the speech service. Let’s take a look at some of

these settings in more detail; these are listed in Table 2-2.

Chapter 2 exploring the apis in More Detail

41

Once we’ve defined our chosen settings for the SpeechRecognition

object, we can then control it using three methods. We can start() the

service, stop() it, or abort() a reference to a current SpeechRecognition

object, in much the same way as we did for the Speech Synthesis demo

earlier in this chapter.

there is a full list of api commands available in the appendix, at the
end of this book.

Table 2-2. Properties of SpeechRecognition API

Property Purpose of property

speechrecognition.

grammars

returns and sets a collection of speechgrammar objects that

represent the grammars that will be understood by the current

instance of the speechrecognition api.

speechrecognition.

lang

returns and sets the language of the current

speechrecognition. if not specified, this defaults to the htMl

lang attribute value, or the user agent’s language setting if

that isn’t set either.

speechrecognition.

continuous

Controls whether continuous results are returned for each

recognition, or only a single result. Defaults to single (or false).

speechrecognition.

interimresults

Controls whether interim results should be returned (true)

or not (false). interim results are results that are not yet final

(e.g., the speechrecognitionresult.isFinal property is false).

speechrecognition.

maxalternatives

sets the maximum number of alternatives provided per result.

the default value is 1.

speechrecognition.

serviceUri

specifies the location of the speech recognition service used by

the current speechrecognition to handle the actual recognition.

the default is the user agent’s default speech service.

Chapter 2 exploring the apis in More Detail

42

However, unlike the Speech Synthesis API, there are not so many

options available for customizing the experience in quite the same

way; nevertheless, we can still implement a few changes to improve the

experience. With this in mind, let’s take a look at what we can to augment

our original demo.

 Updating our SpeechRecognition demo
When working with the SpeechSynthesis API demo, we were able to

add in some additional properties from the API to help fine-tune the

experience for our users; this is not the case with the SpeechRecognition

API. Instead, we will take a different tack; we’ll add in some additional

error management features and better controls for automatically shutting

off the microphone using navigator.mediaDevices.getUserMedia().

EXPANDING THE OPTIONS

For the purposes of this exercise, we will go through each change in smaller

blocks; a screenshot of any visual changes will be displayed as appropriate.

Code for this demo is available in the code download that accompanies this

book – look in the updating speechrecognition folder.

let’s make a start:

 1. First, go ahead and browse to the speech recognition you

created back in Chapter 1, on the Codepen web site – make

sure you are also logged in, so you can save your changes.

 2. next, look for this line of code, and add the following

(highlighted) below it, leaving a line after the new code:

Chapter 2 exploring the apis in More Detail

43

recognition.interimResults = true;

recognition.maxAlternatives = 1;

recognition.continuous = true;

 3. the first change we’re going to implement is to begin to

improve the error handling – at present, we’re piping out the

error message verbatim, which doesn’t look great. With a few

changes, we can make it more friendly, so go ahead and alter

the error event handler, as indicated:

recognition.addEventListener("error", e => {

 if (e.error == "no-speech") {

 output.textContent = "Error: no speech detected";

 } else { output.textContent = "Error: " + e.error; }

});

it’s worth noting that we can expand this with other error codes, later if so desired.

 4. the second change will be an auto turn-off for the speech

recognition engine – after all, we don’t necessarily want our

microphone to stay enabled if we’re not using it for a period

of time, right? For this change, look for the speechend event

handler, then leave a blank line, and add in this function:

recognition.onspeechend = function() {

 log.textContent = 'You were quiet for a while so voice

recognition turned itself off.';

 stream.getTracks().forEach(function(track) { track.stop() });

 console.log("off");

}

We can see the result of this change in Figure 2-2.

Chapter 2 exploring the apis in More Detail

44

 5. the third and final change is to exert more control over the

shutting off of our microphone – there will be occasions where

we may want to control when it is switched off, rather than it

appear to have a mind of its own! Fortunately, the changes for

this are very straightforward – the first is to add in an element

in our htMl markup as indicated:

<p class="output">You said: <strong class="output_

result"> </p>

<button id="micoff">Turn off</button>

 6. the second change requires us to add in a new event handler –

rather than rely on the speech recognition api automatically

shutting off, or trying to transcribe speech it hears that isn’t

intended, we can control when to turn off the microphone. to do

this, look for this line of code:

recognition.continuous = true

then leave a blank line and drop in the following code:

document.getElementById("micoff").

addEventListener("click", () => {

 stream.getTracks().forEach(function(track)

{ track.stop() });

 console.log("off");

});

Figure 2-2. The addition of an auto shut-off feature

Chapter 2 exploring the apis in More Detail

45

 7. We’ve made all of the changes needed. go ahead and save the

results of your work. if all is well, we should see something akin

to the screenshot shown in Figure 2-3, where we can see our

improved error handling in action.

Figure 2-3. Our updated Speech Recognition demo

if you try clicking the turn off button to deactivate the microphone, be
patient – it can take a few seconds for the red indicator to disappear!

When researching code for this demo, I was struck by the amount

of apparent crossover that there seems to be with the event that can be

triggered when using the Speech Recognition API.

It’s for this reason that although we don’t have as many configuration

options to tweak as the Speech Synthesis API, the different event

handlers in the Speech Recognition API can still trip us up! With this in

mind, let’s take a look at the code from the demo we’ve just completed in

more detail.

Chapter 2 exploring the apis in More Detail

46

 Understanding the code
Over the course of the last few pages, we’ve taken a different approach to

developing our original demo – this time around, we’ve expanded it by

adding to or improving the overall experience, rather than simply adding

more options. Let’s take a moment to review the changes we’ve made to

our original demo in more detail.

We kicked off by updating the error event handler, where we did a

check for the no-speech error property and rendered a more acceptable

message back to the user. Our next change implemented an automatic

shut-off option – one thing we have to bear in mind when using the Speech

Recognition API (we don’t want it running without some control!)

The final change we made was to alter the automatic shut-off

function – an automatic turn-off is a useful feature, but there are

occasions where we might want control over when this happens. This is

particularly useful to help prevent our microphone from recording things

automatically, which should not be shared!

Okay, time for us to move on. We’ve explored the basics of how to

implement both the Speech Recognition and Synthesis APIs; it’s time we put

them to a more practical use! To show how we can combine them together,

we’re going to create a simple video player that is controllable by voice; it will

confirm any action we ask of it, vocally, rather than displaying a message on

the screen. This will use principles from both of the demos we’ve created.

Let’s dive in and take a look at how this might work in action.

 Creating a more practical example
For this next exercise, we’re going to add basic speech capabilities to a

video player that uses the HTML5 <video> element.

We’ll focus on adding the play and pause commands for now, but we can

easily add extra commands such as increasing volume or muting sounds at a

later date. When finished, it will look like the screenshot shown in Figure 2-4.

Chapter 2 exploring the apis in More Detail

47

As you set up the demo, take a look at some of the functions and

handlers in close detail – hopefully you should recognize a few elements

from previous demos! With that in mind, let’s crack on and make a start on

our demo.

ADDING SPEECH CAPABILITIES TO VIDEO

this next demo has a couple of requirements: You need to make sure you

have a suitable video available (Mp4 format is fine; there is an example

video in the code download if you don’t have something suitable). We’ll be

building in a Codepen session, so make sure you’ve browsed to the site at

https://codepen.io and have logged in, before continuing:

Figure 2-4. Our voice-controlled video player

Chapter 2 exploring the apis in More Detail

https://codepen.io

48

 1. We’ll begin by adding in the markup that we need as the basis

for our demo – for this, go ahead and copy the contents of the

HTML.txt file from the practical example folder into the

htMl pane on the right.

 2. next, let’s add in some rudimentary styling, so we can at least

make our demo look presentable – for this, go ahead and add

the contents of the CSS.txt file into the Css pane.

 3. We can now turn our attention to the really important part – our

script! there is a good chunk to add in, so we’ll do this block by

block, beginning with some variable declarations. go ahead and

add the following lines of code in at the top of the Js pane:

"use strict";

const log = document.querySelector(".output_log");

const output = document.querySelector(".output");

const confidence = document.querySelector(".confidence em");

// Simple function that checks existence of s in str

var userSaid = function(str, s) {

 return str.indexOf(s) > -1;

};

 4. the next block of code takes care of loading our video player

with our choice of video – this is so we can have it ready to

play when we give the command. leave a blank line and then

add in the following code:

video_file.onchange = function() {

 var files = this.files;

 var file = URL.createObjectURL(files[0]);

 video_player.src = file;

};

Chapter 2 exploring the apis in More Detail

49

 5. this next part gets a little trickier – we need to allow users

to request access to their microphone. For this, we use

navigator.mediaDevices.getUserMedia; we’ll begin by

adding in the construct for this first. leave a blank line and then

add in this method call:

navigator.mediaDevices

 .getUserMedia({ audio: true })

 .then(function(stream) {

...add in code here...

}).catch(function(err) {

 console.log(err);

});

 6. With this in place, we can now start to add in the various

components needed to operate the speech recognition api; we

first need to define an instance of the api. go ahead and add

this in, replacing the text ...add in code here...:

 const SpeechRecognition = window.SpeechRecognition ||

window.webkitSpeechRecognition;

const recognition = new SpeechRecognition();

 7. next comes our first event handler, which we will use to invoke

access to the microphone. For this, leave a line after the

speechrecognition api declarations and then add in this code:

 document.querySelector("button").addEventListener

("click", () => {

 let recoglang = "en-US";

 recognition.lang = recoglang;

 recognition.continuous = true;

 recognition.start();

});

Chapter 2 exploring the apis in More Detail

50

 8. We now need to add in event handlers that take care of

switching on the api when we begin to talk, or turning it off at

the appropriate moment; leave a line blank after the previous

handler and then add in this code:

recognition.addEventListener("speechstart", e => {

 log.textContent = "Speech has been detected.";

});

recognition.addEventListener("speechend", e => {

 recognition.stop();

});

recognition.onspeechend = function() {

 log.textContent =

 " You were quiet for a while so voice recognition

turned itself off.";

 stream.getTracks().forEach(function(track) {

 track.stop();

 });

 console.log("off");

};

 9. this next block is where the real magic happens – this controls

our video player by converting our spoken commands into

something it recognizes and translating it into the appropriate

command. leave a line after the previous event handler and

then drop in this code:

// Process the results when they are returned from the

recogniser

recognition.onresult = function(e) {

// Check each result starting from the last one

 for (var i = e.resultIndex; i < e.results.length; ++i) {

var str = e.results[i][0].transcript;

Chapter 2 exploring the apis in More Detail

51

console.log("Recognised: " + str);

// If the user said 'video' then parse it further

if (request(str, "video")) {

// Play the video

if (request(str, "play")) {

video_player.play();

log.innerHTML = "playing video...";

} else if (request(str, "pause")) {

// Stop the video

video_player.pause();

log.innerHTML = "video paused...";

}

}

}

confidence.textContent =

(e.results[0][0].confidence * 100).toFixed(2) + "%";

};

 10. We’re almost done. the last event handler to add in will take

care of some basic error trapping. go ahead and add in this

event handler, leaving a line blank after the previous block:

recognition.addEventListener("error", e => {

 if (e.error == "no-speech") {

 log.textContent = "Error: no speech detected";

 } else {

 log.textContent = "Error: " + e.error;

 }

});

 11. save your work. if all is well, we should see something akin to

the screenshot shown at the start of this exercise.

Chapter 2 exploring the apis in More Detail

52

try choosing a video using the Choose file button and then saying “video

play” to kick it off – yes, it’s a little gimmicky, but it does serve a valid point.

Who says you always have to press buttons to start something? Yes, i would

absolutely consider myself to be a fan of old-school methods, but there comes

a time when one must adapt…!

If you take a closer look at the code in this demo, you will see that it uses

terms which we’ve already met from earlier demos; in the main, most of it

should start to look familiar now! There is one exception though – I don’t

see an event handler for result; what’s this .onresult handler I see…?

 Exploring the code in detail
Aha! That is an important change to how we’re tracking the final output of

the API! It does work in a similar fashion to the result event handler we’ve

used before, but with one difference: that event handler is only called

once. I will explain what I mean shortly, but first, let’s go through our code

in more detail. I’ll focus on the JavaScript, as the CSS and HTML used are

very standard and should be self-explanatory.

We began with declaring a number of variables for storing references to

elements in our markup, and to help with finding text in our spoken input

(more in a moment). We then moved on to creating a basic function to load

our video player with our chosen video, ready to play it on command.

The next block up is the start of the real crux of our demo – we initialize

a call to navigator.getUserMedia() to allow access to our microphone,

before declaring instances of the API (depending on the browser we use).

We then added in an event handler that initializes our API instance

with various properties – lang being set to US English and continuous to

prevent the API shutting down too quickly, before switching it on. Next

up came three event handlers to respond to speech – speechstart kicks

in when the API detects spoken content, speechend will terminate it, and

onspeechend will recognize if the API has been quiet and switch itself off.

Chapter 2 exploring the apis in More Detail

53

The real focus of our demo comes next – here we made use of onresult.

This differs from the result event handler we’ve used before in that this

doesn’t fire once (which result does), but fires each time we’ve spoken and

the API detects that we’ve stopped speaking. I should point out that this is

not stopped speaking completely, but more a pause between each command

that we give! This function parses through the result using a for loop, to assign

each in turn to str, before performing the appropriate video command based

on what it hears. So, if we had said “play video,” it would search for each word

individually. Based on what it hears, it will detect that we’ve said video, so it

checks to see if we’ve said play or pause. If we said play (as we’ve done here),

it would then pause the video and display confirmation on screen.

Okay, let’s crack on! Although many of the demos we’ve done so far will

likely be in English, there is one thing we should bear in mind: what about

support for different languages? In an age of global connectivity, we can’t

assume that people will just speak English (or indeed just one language, for

that matter!). We should absolutely consider adding support for different

languages; thankfully we can do this without too much difficulty using

the Speech APIs. Let’s dive in and take a look at what we need to do to add

multilingual support in more detail.

 Going multilingual
In an ideal world, it would be great if we all spoke the same language –

after all, we’d be able to communicate with others in a different country,

and there’d be no misunderstandings…but that would be so boring!

There is something to be said for speaking to someone in a different

tongue; embracing a different culture and language adds an extra element

to a holiday or trip. The same applies to reading texts such as those found

in a museum; of course, you might not understand much or any of it, but

you will still get a feel for what things must have been like in that country’s

past history.

Chapter 2 exploring the apis in More Detail

54

But I digress. Bringing things back to reality, we’ve talked about how

to turn speech into text or vice versa. What about other languages though?

We don’t all speak English (or indeed the same language), so how does

that work within either API?

 Exploring support for languages
One of the benefits of using either the Speech Recognition or Speech

Synthesis API is its support for other languages – there are a host of

different options available for us to use. The exact number, as we will

shortly see, will depend on which browser we use; this might be as many

as 21 or as few as just three!

We’ve already touched on including language support as part of the

Speech Synthesis demo we created back in Chapter 1 – remember the

rather intriguing list of names displayed in that demo? We can see an

extract of it in Figure 2-5.

To implement this, we created a loadVoices() function to iterate

through each language option, before adding it into a drop-down. We

then used the getVoices() method to select our chosen language, before

applying the change to the SpeechRecognition object.

Figure 2-5. (An extract of) Languages available for the
SpeechSynthesis API

Chapter 2 exploring the apis in More Detail

55

If you want a reminder of how we did this, try running this simple

example in your browser console – I would recommend running it in the

console log for one of your CodePen demos, so that you can trigger access

to the microphone:

console.log(`Voices #: {speechSynthesis.getVoices().length}`);

speechSynthesis.getVoices().forEach(voice => {

 console.log(voice.name, voice.lang)

});

At this point, it’s worth noting that this should work in most modern

browsers. You may find though you come across a cross-browser issue

when using this code with the SpeechSynthesis API – in some older

versions of Chrome, the original code we used won’t operate.

It works fine in Firefox and Edge (and possibly Safari, for those of you

who are Mac users); instead, you may find you have to use a callback to get

the list to display, before using .getVoices to display the list:

const voiceschanged = () => {

 console.log(`Voices #: ${speechSynthesis.getVoices().length}`);

 speechSynthesis.getVoices().forEach(voice => {

 console.log(voice.name, voice.lang)

 })

}

speechSynthesis.onvoiceschanged = voiceschanged

You may find though that the number of languages returned differs

when using Chrome – the extra ones that start with “Google…” will only be

available if there is a valid network connection available. A copy of the list

is displayed in full, in Figure 2-6.

Chapter 2 exploring the apis in More Detail

56

Otherwise, it will be reduced; Edge currently displays three, while

Firefox shows two. Suffice to say, it’s just another point to consider when

using the Speech APIs!

In contrast, adding lingual support into the Speech Synthesis API gets

more interesting – not only can we choose a language but we can even set

a dialect too! This does require some more work though to implement.

We’ll see how to achieve this shortly, in our next exercise.

 Setting a custom language
If we have a need to set language support when using the Speech

Recognition API, we have to take a different tack – instead of simply calling

the list from the API, we provide it with a list. This takes the form of what is

Figure 2-6. A list of languages supported in the API

Chapter 2 exploring the apis in More Detail

57

effectively a double array. This is a little complicated to explain, so bear with

me on this; I will use the following extract taken from our next exercise.

We start with the array – notice how not all entries are equal? Okay,

before you say anything, I’m referring to the number, not the text within! In

most cases, we have just the language and the BCP47 code (such as af-ZA),

but in the last one we have three values:

var langs =

 [['Afrikaans', ['af-ZA']],

 ['Bahasa Indonesia',['id-ID']],

 ['Bahasa Melayu', ['ms-MY']],

 ['Català', ['ca-ES']],

 ['Čeština', ['cs-CZ']],
 ['Deutsch', ['de-DE']],

 ['English', ['en-AU', 'Australia'],

...

(abridged for brevity)

BCp47, or Best Current practice 47, is an ieFt international standard
used to identify human languages, such as de-De for german. if you
would like to learn more, then head over to the Wikipedia article for a
good introduction, at https://en.wikipedia.org/wiki/IETF_
language_tag.

We then iterate through the array using a construct such as this:

for (var i = 0; i < langs.length; i++) {

 select_language.options[i] = new Option(langs[i][0], i);

}

which puts it into an object from which we can pick the item that should

be displayed by default (in this case English):

select_language.selectedIndex = 6;

Chapter 2 exploring the apis in More Detail

https://en.wikipedia.org/wiki/IETF_language_tag
https://en.wikipedia.org/wiki/IETF_language_tag

58

By itself, this won’t have any effect on the API; to make it work, we

need to add in one more function. At a high level, we iterate through the

array again, but this time pick out the dialect value (in this case, values

from the second column), before adding these to a <select> drop-down

box. We then need to set the visibility such that if we pick a language

that has multiple dialects, the dialect drop-down is displayed or hidden

accordingly. Hopefully this will begin to make some sense; to see how this

works in practice, let’s swiftly move to our next exercise, where we will see

how this code fits into our demo.

ALLOWING FOR LANGUAGES IN SPEECH RECOGNITION

For this next exercise, we’ll need to revert to the speech synthesis demo we

created back in Chapter 1 – to keep a copy of your previous code, i would

recommend logging in to Codepen and hitting the Fork button. our demo will

start with you ready to edit the htMl code, so make sure you’re at this point

before continuing with the steps in this demo.

although some of the changes we’re about to make are simple, others are more

involved. i would recommend making sure you avail yourself of a copy of the code

download for this book; everything will be in the language support folder.

assuming you’re there, let’s get started with updating our demo:

 1. the first change is in indeed in our htMl markup, so look for

this line and comment it out:

Spoken voice: US English

 2. next, go ahead and insert this block immediately below it:

 Spoken voice and dialect:

 <div id="div_language">

Chapter 2 exploring the apis in More Detail

59

 < select id="select_language"

onchange="updateCountry()">

</select>

 <select id="select_dialect"></select>

 </div>

 3. We now need to adjust where the new drop-downs sit – for

this, go ahead and add in the following Css style at the bottom

of the Css pane:

.voice { float: right; margin-top: -20px; }

 4. the real changes though are in our Javascript code

(naturally!) – for this, go ahead and open a copy of the JS.txt

file from the code download and then look for this line of code:

var langs = (it will be around line 7).

 5. Copy it, and the following lines, down as far as (and including)

the closing bracket after this line:

 select_dialect.style.visibility = list[1].length == 1 ?

'hidden' : 'visible';

}

 6. paste the contents of the Javascript from the code download,

immediately after this line, leaving a line between it and your

new block:

const output = document.querySelector(".output_result");

 7. okay, next change: scroll down until you see the start of this

event handler:

document.querySelector("button").addEventListener("click", ()

 8. Comment out let recoglang = "en-US" inside this

function, and replace it with this:

recognition.lang = select_dialect.value;

Chapter 2 exploring the apis in More Detail

60

 9. scroll down until you see this line: output.textContent =

text;

 10. next, add a blank line and then drop in this line of code, before

the closing bracket and parenthesis:

log.textContent = "Confidence: " + (e.results[0][0].

confidence * 100).toFixed(2) + "%";

 11. at this point, we should have all of our code changes in place;

go ahead and save your work.

 12. try running the demo. if all is well, we should have something

akin to the screenshot shown in Figure 2-7. try changing the

voice to a different language and then saying something –

hopefully you or a friend might know enough words to say

something that makes sense!

Figure 2-7. The results of speaking French to our demo

As we can see from the demo, it shows that I do know some French; I

can also get by with Spanish, although it’s nowhere near at the same level!

This aside, we’ve added a critical feature to this demo that is worth exploring

in more detail – let’s take a moment to explore how it works in more detail.

Chapter 2 exploring the apis in More Detail

61

 Breaking apart our code
If we take a closer look at the code we’ve just written, you might just spot

an oddity – don’t worry if you don’t though, as it isn’t immediately obvious!

I’ll give you a clue to get you started: it has something to do with the value

we assign as our language – it’s not what you might at first expect…

Okay, I digress. Back to our demo, we kicked off by commenting out the

original text that indicated which language was being used; we replaced

this with two drop-downs, one for language and the other for the dialect.

We then brought in a substantial chunk of code, which first sets up an array

langs that stores both the language and dialect values. This we followed

with a for loop to iterate through the first set of values and insert each into

the select_language drop-down. We then set a couple of default values –

in this case English – for both the language and dialect properties.

Next up came the updateCountry() function – it looks a little complex,

but isn’t too hard to get our heads around it. We simply cleared out the

dialect drop-down (select_dialect) before populating it with values from

the second column of data (in this case, where we have the BCP47 values

that we talked about earlier).

The remaining changes are small ones – we reassigned the output

value from the select_dialect drop-down to recognition.lang and

added in a confidence statement which is rendered in the output_log

span element. Makes sense? Well, it would, if only for one nagging

problem. Why on earth does it look like we’re setting the dialect value,

rather than the language value…?

 The difference between language and dialect
If I were to ask you the subject of this section as a question, hopefully you

would say that language is something we would speak and that a dialect

is effectively a regional variation of that language…or something to that

Chapter 2 exploring the apis in More Detail

62

effect! However, you’d be really confused if I said that, at least within the

context of this API, the two were actually two halves of the same thing, and

in some cases were the same! What gives…?

Well, the answer to that lies in five characters – BCP47. This is the

international standard that I alluded to earlier, where we see codes such

as pt-BR, or the Brazilian dialect of Portuguese. But the real trick though

is in how we make use of this in our code – although we select both the

language and dialect (where the latter is available), it’s not until we select

that dialect value that we get the real value used.

If, for example, we were to select that dialect of Portuguese, we

would get pt-BR; this is the value that the lang property needs for Speech

Recognition. In effect, we’re using the language drop-down to filter our

choices, before selecting the real language via the dialect drop-down for

use in our demo.

Okay, let’s move on. There is one more feature we need to explore,

before we get into the practical fun stuff of building projects! As I hope

you’ve seen from the demos, speech recognition is developing well, but

it’s not perfect. There may be occasions where we might want to give it a

helping hand. Let me introduce you to SpeechRecognition.Grammars.

 Making use of grammar objects
Over the course of this chapter, we’ve explored the Speech APIs in more

detail, covering features such as adding multi-language support, providing

better control over when the microphone can be used, and refining what is

returned if we should encounter an error when using the APIs.

However, there may be instances where we need that helping hand –

this is where the grammars part of the SpeechRecognition API can play

its role. However, this feature is something of an oddity and comes with a

potential sting in its tail. Why?

Chapter 2 exploring the apis in More Detail

63

Many have found it to be confusing at best, or actually not do what

they were otherwise expecting it to do. A part of this is likely due to when

the original specification was written; it was done at a time when the word

recognition rate wasn’t as good as it is now, and so it needed something to

give what could be described as a boost.

Consequently, support for the SpeechGrammarList interface is poor –

it’s currently only supported in Chrome. It also makes use of the JSpeech

Grammar Format (or JSGF) which has been removed from most browsers.

Therefore, I would not recommend using this feature unless absolutely

necessary, and be aware that it should be used at your own risk and that it

is likely to be removed in the future.

if you want to see the technical detail and discussion around
the proposed removal, please refer to the W3C github site at
https://github.com/w3c/speech-api/pull/57 and
https://github.com/w3c/speech-api/pull/58.

 Summary
When working with the Speech APIs, there are a host of options we can

use; we covered some of them when we were first introduced to the APIs

back in Chapter 1. Over the course of this chapter, we’ve built on what we

learned there with additional options. Let’s take a moment to review what

we have learned.

We kicked off by creating demos to explore both the Speech Synthesis

and Speech Recognition APIs in greater detail; we first covered more of

the options available within each API, before adding functionality to each

demo.

Chapter 2 exploring the apis in More Detail

https://github.com/w3c/speech-api/pull/57
https://github.com/w3c/speech-api/pull/58

64

Moving on, we then took a look at how we can add multi-language

support when using the APIs. We explored the basic principles behind

each API and how to set a custom language. This was swiftly followed by

a demo, before exploring the differences between setting language and

dialect properties and how both interact with each other to give us our

desired language setting.

We then rounded out the chapter with a look at the SpeechGrammar

interface. We covered how this could be used, but that there are plans

to drop support for it in the future; we covered some of the reasons why

this might be the case and how it may or may not affect your code in

practice.

Phew! Covered a lot, huh? Well, the pace isn’t going to slow down –

things will start to get really interesting! Over the course of the next few

chapters, we’re going to implement some sample projects that illustrate

how we might make use of the APIs in a practical context. This will cover

anything from leaving verbal review feedback to automating part or all of

a purchase process; we’re really only limited by our imagination! To kick

us off, we’re going to start with a relatively new addition for some sites.

How about using the API to develop a chatbot, for example? Turn the

page to find out how we can start to have a proper conversation with your

web site…

Chapter 2 exploring the apis in More Detail

65© Alex Libby 2020
A. Libby, Introducing the HTML5 Web Speech API,
https://doi.org/10.1007/978-1-4842-5735-7_3

CHAPTER 3

Supporting Mobile
Devices

“Juniper Research has forecasted that the number of smart
assistants will triple from 2.5 billion in use at the end of 2018
to 8 billion by 2023.”

Remember that shocker from the start of Chapter 1? Given that mobile

usage has now overtaken desktop, this makes for a powerful combination!

But – I hear you: “What is the significance of those two facts?” Well, let me

reveal all.

In previous chapters thus far, you may have noticed a focus on using

the desktop as our environment. There’s nothing wrong with this per se,

but it misses out one crucial point: what about using mobile devices?

Given that more and more people use smart devices to purchase products,

then it makes absolute sense to consider mobile devices when using the

Web Speech APIs.

Over the course of this chapter, we’ll take a look at some of the demos

we’ve created in earlier chapters and explore using them on mobile

devices. Based on what you’ve seen so far, you might think this shouldn’t

be a problem, as most recent browsers support the APIs on the desktop,

right? Well, things are not all they may seem – be prepared to make some

decisions.

66

 Supporting the Speech Synthesis API
Yes, that last comment might seem a little intriguing, but we will have

some decisions to make about how we might use the APIs within a mobile

environment! Let me explain what I mean by first illustrating the level of

support for the APIs on more popular mobile platforms, beginning with

Speech Synthesis (Figure 3-1).

Figure 3-1. Support for the Speech Synthesis API Source: CanIUse.com

Ouch! That doesn’t seem quite as good as desktop, right? Granted

coverage isn’t as extensive as standard desktop users, but then with the

plethora of different platforms available, it’s not surprising that support

isn’t so uniform! However, it’s not as bad as it might seem – to understand

why relies on us making a conscious decision about one key question: how

much do we want to support Google Chrome?

 Breaking down the numbers
To understand the answer to that last question, we should first see just who

supports the API and the current usage of that browser. Table 3-1 shows a

more detailed version of the information presented from Figure 3-1, where

we can see just which of the more popular browsers support the API.

Chapter 3 Supporting Mobile DeviCeS

67

It’s easy to see that usage of Google Chrome far outstrips all of the

other browsers combined, by a factor of almost 3 to 1! It therefore raises the

question about whom we should support, particularly for any minimum

viable product (or MVP).

As either all other browser manufacturers don’t support the API

on mobile devices or usage of that browser is well below 5%, it would

make sense to focus on Chrome. To really ram the point home (as if it is

needed!), we can see just how much Chrome is used in Figure 3-2.

Table 3-1. Support for the Speech Synthesis API on mobile devices

Mobile browser Supported? % usage, as of December 2019

ioS Safari Yes 2.89

opera Mini no 1.17

android browser no 0

opera Mobile no 0.01

Chrome for android Yes 35.16

Firefox for android Yes 0.23

uC browser for android no 2.88

Samsung internet Yes 2.73

QQ browser Yes 0.2

baidu browser no 0

KaioS browser Yes 0.2

Chapter 3 Supporting Mobile DeviCeS

68

This might seem a little drastic to cut out support for that number of

browsers, but in today’s world we need to be pragmatic: do we have the

resources or time to develop for all of the different browsers? Support for

Chrome is far outstripping others, so it makes commercial sense to focus

on this browser and only include others if the revenue is sufficiently large

enough to warrant deploying resources (such as for very large customers).

 Supporting the Speech Recognition API
We’ve explored what the support is like for the Speech Synthesis API. How

does it compare with its sister, the Speech Recognition API?

Well, at first glance, support is not as good – in some respects, this isn’t

a real shock, as this API is more complex than the Speech Synthesis API, so

support isn’t as far advanced as that API. We can see an outline summary

for popular mobile platforms in Figure 3-3, shown overleaf.

Figure 3-2. Chrome usage as of December 2019 Source:
CanIUse.com

Chapter 3 Supporting Mobile DeviCeS

69

At first glance, the main difference is that any support for this API has

yet to reach fully ratified status (whereas the other API already has); it

just means that we need to use the -webkit prefix when working with this

API. As we’ll see shortly, this is no big deal; the real question though is in

the numbers of those who use the browser! To see what I mean, let’s dive

in and take a look at those numbers in more detail, just as we did for the

Speech Synthesis API.

 Understanding the numbers
If we were to look at the detail of who supports the Speech Recognition

API, we see the same numbers of people using each browser as before.

This time around though, support for the API within each browser is just

under 25% less than those that support the Speech Synthesis API (allowing

for the use of a vendor prefix and that one browser requires it to be enabled

manually). We can see the results listed in Table 3-2.

Figure 3-3. Support for the Speech Recognition API on mobile
devices Source: CanIUse.com

Chapter 3 Supporting Mobile DeviCeS

70

It will be no surprise then that Chrome is the standout of this table, just

as it was for the Speech Synthesis API. If we were to hover over the figure

from the CanIUse.com web site, we would see the same result shown as

before!

A check of the numbers shown in Table 3-2 shows that it would make

perfect sense to focus efforts on developing for Google Chrome; any time

spent on other browsers should only be for large clients where revenue

opportunities can justify the effort required! Now that we’ve seen the

numbers for both APIs, it’s worth taking a few moments to summarize why

we should consider only developing for Chrome:

Table 3-2. Support for the Speech Recognition API on mobile devices

Mobile browser Supported? % usage, as of
December 2019

ioS Safari no 2.89

opera Mini no 1.17

android browser no 0

opera Mobile no 0.01

Chrome for android (uses webkit prefix) Yes – partial 35.16

Firefox for android no 0.23

uC browser for android no 2.88

Samsung internet (uses webkit prefix) Yes – partial 2.73

QQ browser (uses webkit prefix) Yes – partial 0.2

baidu browser (uses webkit prefix) Yes – partial 0

KaioS browser (uses webkit prefix) Can be enabled 0.2

Chapter 3 Supporting Mobile DeviCeS

71

• Chrome is the most popular, so we will get the biggest

exposure by focusing on this browser, where we can

reuse the same core functionality in both mobile and

desktop environments.

• If (heaven forbid) we come across any problems, we

should see them appear quickly and can then decide

to deactivate or pause the speech option sooner. It will

be harder to find issues on browsers where the usage

levels are much lower and with which we might not

know of any issue as quickly as with Chrome.

Okay, we’ve outlined the case for focusing on Chrome, given its

popularity and level of support; it’s time to get practical! Before we do so,

there are a couple of points we need to cover off with respect to the demos

in this chapter; this is to ensure you get the best effect when testing the

results of each exercise.

 A couple of prerequisites
Over the course of this chapter, we will revisit some of the exercises we

created in CodePen from earlier chapters, with a view to adapting them for

display on a mobile device such as your cell phone.

We could of course create new demos – there’s nothing wrong with this

approach, but a more beneficial approach would be to see how easy it is

to adapt existing demos to work on a mobile platform. With this in mind,

there are a couple of points to note:

• The code can be edited from within the Pen that we

create on a desktop, but to get the best effect when

testing our demo, it should be displayed from a cell

phone.

Chapter 3 Supporting Mobile DeviCeS

72

• For the purposes of each demo and to prove our earlier

discussion, we will be using Chrome only – given the

level of usage stands head and shoulders above all

other browsers, it makes sense to use the most popular

one!

• We will make use of the code download for this book as

before – make sure you have a copy to hand, before you

commence with the demos in this chapter.

With this in mind, let’s get stuck into developing some code, beginning

with checking support for the APIs from within our browser.

 Checking support for the APIs
Our first demo will be to help establish if a chosen browser supports

the APIs – it’s worth pointing out that if we had decided to solely work

with Chrome (as outlined previously), then this test might seem a little

superfluous!

However, it’s still worth running; not only are we checking support but

we will also use a different method to achieve the same result. There is no

overriding reason for either method to work better than the other; each

will work fine, and you can choose which you prefer to use in your own

projects.

ESTABLISHING SUPPORT FOR SPEECH APIS

We’ll start with checking for the Speech Synthesis api, but the code will also

work with the Speech recognition api (just replace all instances of the word

“Synthesis” with “recognition” in your code, then save it, and run it).

to establish if a browser supports the apis, go ahead with these steps:

Chapter 3 Supporting Mobile DeviCeS

73

 1. We’ll begin by extracting a copy of the checksupport folder

from the code download and saving it to our project area.

 2. next, go ahead and browse to Codepen at https://codepen.io.

then log in with the same account details you used back in

Chapter 1.

 3. on the left, choose Create ➤ pen. then copy and paste the

contents of JS.txt into the JS pane of our pen – make sure

you save the pen! if all is well, we should have something akin

to the screenshot shown in Figure 3-4.

Figure 3-4. The code entered into the JS pane of CodePen

 4. next, open a copy of the code from HTML.txt and paste the

contents into the htMl pane of our pen.

 5. once saved, we can test the results – for this, go ahead and

browse to your Codepen from your cell phone, then make sure

you have editor view displayed, and hit the Console button. We

don’t need to do anything. if your browser supports either api,

then we will see confirmation of this in the Codepen console, as

shown in Figure 3-5.

Chapter 3 Supporting Mobile DeviCeS

https://codepen.io

74

Excellent! We’ve confirmed that our mobile browser can support the

API (and yes, I am assuming you’ve used Chrome!).

This means we can now move on and start to adapt our previous

exercises to display on mobile devices. Before we do so, there is one little

tip I want to quickly run through: working out the available viewport area.

Yes, I know you might well be asking what this has to do with the Speech

APIs, but there is a good reason for this; bear with me, and I will explain all.

 Determining space available
Anyone who spends time designing for mobile will no doubt be aware of

the constraints in space available on pages – it’s that age-old question of

what to offer when the viewport area is so small.

This is particularly important when using the Speech APIs – we have to

be mindful of how much space is needed to display elements such as the

input field needed for the Speech Synthesis API, or the space needed to

display transcribed text when using the Speech Recognition API.

This is where working out the viewport area using code could be of help –

not just to establish how much space we have in code, but to also set Chrome’s

responsive view to fit your cell phone’s available space. Let’s see what this

means in reality and how they both can help the Speech APIs, in more detail.

Figure 3-5. Proving that our cell phone supports the APIs

Chapter 3 Supporting Mobile DeviCeS

75

 Setting available space using code
As space will be of a premium, we need to work out just how much space

we can afford to use. Rather than try to guess values or work out by trial

and error, we can get the values automatically using JavaScript.

This is great for testing on multiple devices, so we can get a feel for

how much space we will have to play with, when it comes to laying out the

elements for the Speech APIs. To do this, you can use the function I’ve set up in

a CodePen at https://codepen.io/alexlibby/pen/MWYVBGJ, for this purpose.

as an aside, don’t forget to add in the right meta tags too – you
will need something like this: <meta name="viewport"
content="width=device-width, initial-scale=1.0">

 Configuring Chrome’s Responsive Mode
In addition, we can use these values to help set up Chrome’s Responsive

Mode (or Mobile Emulation mode, as it is officially called). It goes without

saying that no two cellphones will have the same space or viewport, so to

help with this, we can set up our own custom areas. Let’s take a look at how

in our next exercise.

SETTING UP VIEWPORTS IN CHROME

this next exercise can be done either in Chrome for mobile or desktop if you

want to practice the steps; ultimately you will need to set it in Chrome to get

the best effect during testing. We can set up a viewport using these steps:

 1. Fire up Chrome, and browse to a site – i’ll assume we’ll use

Codepen, which is great for testing responsive views.

 2. next, we need to enable responsive Mode, which we can do

using Ctrl+Shift+i (Windows and linux) or Cmd+Shift+i (Mac).

Chapter 3 Supporting Mobile DeviCeS

https://codepen.io/alexlibby/pen/MWYVBGJ

76

 3. at the top of the resized page will be an option to choose a

different viewport; it will look something akin to the screenshot

shown in Figure 3-6.

Figure 3-6. Chrome’s Responsive Mode option

 4. Click the drop-down on the left, and select edit ➤ add custom

device…

 5. in the Device name field, enter the make and model of your cell

phone or chosen mobile device.

 6. below this are three fields – enter the width in the left and

height in the middle, and leave the right field unchanged. Make

sure usage agent string is set to Mobile.

 7. hit add. You will now be able to set this as your chosen viewport

area when testing the Speech apis.

This is just one small area to consider when working with the Speech

APIs – we’ve only touched on two methods here and not explored some of

the quirks around the values returned. However, it should give you a nice

heads-up in terms of what space you will likely have, so that you can set

up a simple way to allocate space and test features, without having to work

entirely on a mobile device or use an external service such as BrowserStack.

this isn’t to say we should ignore services such as browserStack,
which perform a useful function – it’s intended that this little trick
would work during development, prior to completing proper testing!

Chapter 3 Supporting Mobile DeviCeS

77

Okay, let’s get back on track with the APIs. Now that we have a quick

and dirty way to work out available viewport areas, it’s time we got stuck

into the APIs and see how they work on mobile devices! I suspect you

might be thinking that we have to make lots of changes, right? If not to the

APIs themselves, at least to the styling, surely…?

Well, I hate to disappoint, but the answer is no – if we’re careful about

our styling, then we shouldn’t need more than just a handful of tweaks.

Let’s put this theory to the test and see how it works by adapting two

CodePen demos from earlier in the book.

 Implementing the Speech Synthesis API
Remember this demo (displayed in Figure 3-7) from way back in Chapter 1?

Figure 3-7. Our original Speech Synthesis API demo from Chapter 1

Chapter 3 Supporting Mobile DeviCeS

78

This was a simple demo to show off how we can implement the Speech

Synthesis – it allowed us to enter any text we wish into the input field

and then adjust settings such as the voice and pitch, before asking the

computer to render the text as speech.

hopefully you will still have a version saved as a pen from Chapter 1 –
do you? if not, i would recommend you go set it up again using the code
from the readingback demo; you will need it for later demos too!

Assuming you have either set it up again or have the link from the

version you created earlier, try running it in Chrome for mobile on your

cell phone. If you enter something into the input field, then tap on Speak;

you should find Chrome will render it back as speech.

Trouble is the UI doesn’t look that great, does it? It’s the same code as

before, but this time we need to scroll back and forth – a sure-fire way of

putting people off! Ironically this whole setup is one of the reasons why I

would advocate working solely with Chrome, at least for the immediate

future. We don’t need to touch any of the JavaScript required for the

Speech Synthesis API, but can instead focus on tweaking our markup and

styling to better fit the available space. To see what I mean, let’s put this

to the test and adapt that demo to better fit your cell phone, as part of the

next exercise.

 Adapting design for mobile
For this next exercise, we will reuse a demo from way back in Chapter 1

(I know, it wasn’t that long ago, although it may seem otherwise!). We’ll

implement some tweaks to ensure it better fits the limited space available

while making sure that the functionality still operates as expected. Ready

to dive in and take a look?

Chapter 3 Supporting Mobile DeviCeS

79

SPEAKING ON A MOBILE

let’s go ahead and update our demo, using these steps:

 1. We’ll begin by browsing to Codepen at https://codepen.io

and then logging in with the same account details you used back

in Chapter 1.

 2. Switch to the htMl pane. then change the <h1> tags around

the page title to <h3>.

 3. next, change to the CSS pane, and add in the following CSS

alterations at the bottom of that pane:

/* ADAPTATIONS FOR MOBILE */

h3 { margin: 0; }

#page-wrapper { width: 350px; margin: 13px auto;

padding: 5px 16px; }

#voice { vertical-align: super; width: 320px;

margin-left: -3px; }

button { width: 28%; }

input[type="text"] { padding: 2px 5px; font-size:

16px; }

 4. Save the pen. if all is well, we should see our demo’s styling

has been updated; we can see evidence of this in the

screenshot in Figure 3-8.

Chapter 3 Supporting Mobile DeviCeS

https://codepen.io

80

Figure 3-8. Our updated Speech Synthesis API, running on a cell phone

Although this is something of a simplistic demo, it shows that if we’re

brave enough to work solely on Chrome, then there should be no need to

change the core functionality that pertains to the Speech Synthesis API! All

we had to do was tweak some of the styles to allow the visual UI to better

fit the available space, while the core JavaScript code remained unchanged

from the original demo.

There is one small thing though – is that…Germany I see selected as

our default voice? It is indeed; a quirk of using Speech Synthesis API in a

mobile device means that you may find you get a different voice selected as

the default, in comparison to what you might see on a standard desktop. If

we tap on the drop-down, we can see that Germany is indeed the default,

as indicated in Figure 3-9.

Chapter 3 Supporting Mobile DeviCeS

81

Figure 3-9. The default voice is different on a mobile…

At this point, I’ll bet some of you may be asking, “What about the

Speech Recognition API?” Assuming we chose to work with just Chrome,

what kind of changes would we need to do here? These are good questions,

and I’m happy to report that we can apply the same principles here, when

it comes to updating our code. To see what I mean, let’s dive in and take a

look at those changes, in more detail.

Chapter 3 Supporting Mobile DeviCeS

82

 Implementing the Speech Recognition API
Although support for the Speech Recognition API isn’t as advanced, we

can absolutely apply the same changes. If we were to run a version of the

original demo in Google Chrome on a cell phone, Figure 3-10 shows what

this would look like.

Figure 3-10. Our original Speech Recognition demo on a cell phone

Not great, huh? Try tapping on the Click and talk to me! button, and

say something into the phone’s microphone. It will render something on

screen, but it’s not easy to read, right? The great thing though is that we

only need to make minimal changes to our styling, in order for this demo

to work better. Our next exercise will explore what these changes are, in

more detail.

Chapter 3 Supporting Mobile DeviCeS

83

 Adapting for mobile use
In the previous exercise we’ve just completed, we saw how to adapt our

design to allow the Speech Synthesis API to better fit the available space

and that we didn’t have to change any of the JavaScript code used to create

the feature. The great thing is that we can use the same principles for the

Speech Recognition API too. Let’s explore what this means in the form of

our next exercise.

RECOGNIZING SPEECH ON A MOBILE

okay, let’s crack on by following these steps:

 1. We’ll begin by browsing to Codepen at https://codepen.io

and then logging in with the same account details you used back

in Chapter 1.

 2. Switch to the htMl pane and then change the <h1> tags

around the page title to <h3>.

 3. next, change to the CSS pane, and add in the following CSS

alterations at the bottom of that pane:

/* ADAPTATIONS FOR MOBILE */

h3 { margin: 0 0 20px 0; }

#page-wrapper { width: 350px; }

.voice { float: right; margin-top: 5px; }

.response { padding-left: 0px; margin-top: 0px;

height: inherit; }

.output_log { font-size: 20px; margin-top: 5px; }

Chapter 3 Supporting Mobile DeviCeS

https://codepen.io

84

 4. Save the pen. if all is well, we should see our demo’s styling

has been updated; we can see evidence of this in Figure 3-11

overleaf, where spoken words have already been rendered and

the api turned off due to inactivity.

Hold on a moment. Some of those selectors look familiar, right? Yes,

that is indeed correct, although if you look closely at the properties defined

within, there are some differences.

I’m not sure if this was by pure chance or design (the desktop versions

came first, honest!), but it shows that even though support for both APIs

is not at parity across browsers, the basic JavaScript code has remained

untouched in both instances.

It does make the assumption though that we work solely with

Chrome – while some of you may be concerned that this appears to limit

our options, it’s worth bearing in mind that the APIs (at the time of writing)

are still in something of a state of flux, even though they do operate fairly

well at this stage. It’s perfectly acceptable to limit features at this stage,

on the basis that we’re offering a new feature and that we can more easily

monitor take-up of our new feature.

Figure 3-11. Recognizing speech on a mobile, with the API

Chapter 3 Supporting Mobile DeviCeS

85

Okay, let’s move on. We’ve covered both APIs in isolation, but what

about putting them together? No problem, this is something we’ll do more

of in the projects later in this book, but for now, let’s take a look at how this

might work when coding for a mobile environment.

 Putting it together: A practical example
Throughout this chapter, we’ve seen how the APIs work on mobile devices,

and that if we’re happy to work just with Chrome, this can reduce the

amount of JavaScript changes we need to make!

It’s time to bring both APIs together for one more demo in this

chapter – for this, we’re going to set up a little app that will tell us the time

in one of my favorite cities, Copenhagen. For this demo, we’ll make use of

both APIs – the Speech Recognition API to ask it to tell us the time and the

Speech Synthesis API to give us the response. Let’s get stuck in and take a

look at setting up our demo in more detail.

if you want to use a different city, then you will need to change the
time zone – Wikipedia has an extensive list of suitable time zones, at
https://en.wikipedia.org/wiki/List_of_tz_database_
time_zones.

GETTING TIME

to create our demo, follow these steps:

 1. We’ll begin by extracting a copy of the practicalexample

folder from the code download and saving it to our project area.

 2. next, go ahead and browse to Codepen at https://codepen.io

and then log in with the same account details you used back in

Chapter 1.

Chapter 3 Supporting Mobile DeviCeS

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://codepen.io

86

 3. on the left, choose Create ➤ pen.

 4. We need to add in a couple of external libraries to help with the

demo – for this, click Settings ➤ CSS and then add in these

two links in the slots at the bottom of the dialog box:

https://use.fontawesome.com/releases/v5.0.8/

css/fontawesome.css

 https://use.fontawesome.com/releases/v5.0.8/

css/solid.css

 5. next, click JavaScript in the same dialog box – this time, add

in this link, which will help with getting the right time in our

chosen city:

https://cdn.jsdelivr.net/npm/luxon@1.21.3/

build/global/luxon.min.js

 6. hit Save and Close. then copy and paste the contents of JS.

txt into the JS pane of our pen.

 7. next, open a copy of the code from HTML.txt and paste the

contents into the htMl pane of our pen.

 8. go ahead and do the same thing for the CSS.txt file, pasting it

into the CSS pane.

Make sure you hit the Save button or press Ctrl+S (or Cmd+S) to save your work!

 9. once saved, we can test the results – for this, go ahead and

browse to your Codepen demo from your cell phone, then make

sure you have editor view displayed, and hit the Console button.

 10. We don’t need to do anything. if your browser supports either

api, then we will see confirmation of this in the Codepen

console, as shown in Figure 3-12.

Chapter 3 Supporting Mobile DeviCeS

https://use.fontawesome.com/releases/v5.0.8/css/fontawesome.css
https://use.fontawesome.com/releases/v5.0.8/css/fontawesome.css
https://use.fontawesome.com/releases/v5.0.8/css/solid.css
https://use.fontawesome.com/releases/v5.0.8/css/solid.css
https://cdn.jsdelivr.net/npm/luxon@1.21.3/build/global/luxon.min.js
https://cdn.jsdelivr.net/npm/luxon@1.21.3/build/global/luxon.min.js

87

Figure 3-12. Our practical example in action

In this last exercise, we’ve brought together the code from two

earlier demos and adapted the UI to allow us to get and display the time.

Although the code should by now begin to be more familiar, it’s worth

taking a moment to go through the code in more detail, to see how the

APIs can work together in a mobile environment.

 Dissecting the code in detail
Take another look at the JavaScript we’ve used in this demo – granted

there is a fair chunk involved, but most of it is not new. It was lifted from

two previous demos we created earlier in the book. The same applies to

the CSS and markup used; although we’ve removed some of the elements

that were not needed (such as the input field), the rest is standard HTML,

which came straight from the same two demos.

Chapter 3 Supporting Mobile DeviCeS

88

The real magic though is in the JavaScript we’ve used – we kick off by

defining a number of variables to cache elements, before checking our

browser does indeed support the Synthesis API. Ideally, we would have

included a check here for the Recognition API too, but given that we’re

using Chrome, we would get the same positive response here too.

Next up comes the same loadVoices() function that we’ve used

before; this gets the available voices from the browser and loads them into

the drop-down box. We then have the onerror event to trap for any issues;

this will display anything in the console log area. We then round out the

first part of this demo with the speak() function, which we created in an

earlier demo and reused in our practical example.

The second half of this code block is for the Speech Recognition API;

the first function is a new one that uses the Luxon time library to get the

current time in our chosen city (in this instance, Copenhagen). We set the

initial time value using luxon.DateTime.local(), before switching the

time zone to Copenhagen and reformatting the time accordingly.

We then move onto defining an instance of the Speech Recognition

API as an object, before assigning a number of properties such as whether

to display interimResults, have more than one alternative, or set the API

to run continuously.

Next up comes the click event handler – although our code will

automatically fire off the microphone, we still need this to start the

Recognition API, as well as set the language (here it is set to en-GB, but we

could set it to any appropriate value if needed). We then have the same

event handlers as before, for speechstart, speechend, onspeechend, and

error. The only changed handler is result – most of it stays the same,

but we’ve added a block to split the transcribed text, before determining if

we’ve spoken the word “Copenhagen” and responding accordingly if this is

the case.

Chapter 3 Supporting Mobile DeviCeS

89

 Working with mobile: An epilog
The demos we’ve built throughout this chapter are very straightforward –

one might be forgiven for thinking that life is easy, and that implementing

the APIs is a doddle! But things are not always as they seem; before we

move onto the next chapter, I want to leave you with a thought.

When researching for this book, my original intention was to create a

voice-controlled video player that worked on mobile – after all, we did one

for desktop, so it should be just a matter of tweaking styles, right? Well, the

answer is yes – and perhaps no.

Assembling the demo was very easy – most of it had been done earlier,

so I reused the code for this and turned off some of the options around

shutting down the service. However, it seems there may be differences

in how Speech Recognition works on the mobile – yes, Chrome is indeed

supported, but I suspect that not every browser (that supports the APIs)

offers the same consistent level of support! I could play the video demo on

my cell phone, but it would stop the recognition service very quickly or

potentially throw a network error.

I think this might be down to how CodePen works and that it

frequently refreshes – the demo works fine on desktop, so pointing to a

potential issue somewhere in the environment! It’s something to bear in

mind – you will need to test your solutions thoroughly to ensure they work

as expected for customers.

You can see the video demo i created in Codepen, at https://
codepen.io/alexlibby/pen/xxbpOBN; if you need a sample
video, try downloading one from https://file-examples.com/
index.php/sample-video-files/sample-mp4-files/.

Chapter 3 Supporting Mobile DeviCeS

https://codepen.io/alexlibby/pen/xxbpOBN
https://codepen.io/alexlibby/pen/xxbpOBN
https://file-examples.com/index.php/sample-video-files/sample-mp4-files/
https://file-examples.com/index.php/sample-video-files/sample-mp4-files/

90

 Summary
Mention the words “working with mobile,” and you are likely to send

a shudder down the spine of any developer – it’s hard enough working

across desktop as it is, without the added extra of a mobile platform!

The Speech APIs though are one area where functionality is less of a

problem. Over the course of this chapter, we’ve explored how we can

adapt existing code to work on mobile devices, assuming we are happy

to limit the exposure based on the type of browser used. We’ve covered

some important topics throughout this chapter, so let’s take a breather and

review what we’ve learned.

We kicked off by examining the current level of support for both

the Speech Synthesis and Recognition APIs, before understanding how

limiting exposure to Chrome might make sense in the short term. We then

covered how to determine if your chosen mobile browser does indeed

support the APIs, before exploring a quick tip to work out the available on-

screen space and how this is important for the APIs.

Next up, we took two original demos (one for each API) and converted

them to work on the mobile platform, before understanding what changes

we had to make to get them operational. We then rounded out the chapter

with a look at updating a more practical example, before finishing with

some final thoughts on using mobile devices with the API.

Phew! Theory is now over. Time for some fun! It’s at this point where

we get to start playing with some example projects. How about using

your voice to find a nearby restaurant, ask for the time, or even pay for

products? These are just three of the tricks we will cover as part of the

upcoming projects; we’ll kick off with that all-important task of giving

feedback and just how we can put a new spin on an age-old problem…

Intrigued? Stay with me, as I feed back just how we can use the APIs (yes,

pun most definitely intended!) in the next chapter.

Chapter 3 Supporting Mobile DeviCeS

91© Alex Libby 2020
A. Libby, Introducing the HTML5 Web Speech API,
https://doi.org/10.1007/978-1-4842-5735-7_4

CHAPTER 4

Combining the APIs:
Building a Chatbot
Over the course of the last few chapters, we’ve explored the Speech API

in detail and used it to set up some basic examples of speech capabilities.

This is only the start though – there is so much more we can do! Making

use of the APIs opens up a host of innovative ideas for us to explore, and

that’s before we even personalize the functionality we offer to customers.

Over the course of the remainder of this book, we’re going to put the

APIs to good use to build various projects that showcase how we might

add speech capabilities. This will range from features such as leaving

vocal feedback through to automating parts of the checkout process. For

now though, we’re going to combine both APIs together to build a simple

chatbot that will respond to some basic phrases and display the results

on screen. As I am sure someone once said, we have to start somewhere,

so there’s no better place than to set the scene and explore how using

chatbots can be beneficial to us.

 Why use a chatbot?
So why would we want to use a chatbot? What makes them so special?

Traditionally companies have customer service teams who might

deal with all manner of different requests – this could be from arranging

refunds to helping with diagnosing issues on your Internet access.

92

This becomes an expensive use of resources, particularly when customers

can frequently ask the same type of question! With care, we can create a

chatbot to handle some of these questions for us, which helps free up staff

for more complex queries that require human intervention.

Is this a good thing? Well, yes – and no. Chatbots can be set up in such a

way as to allow contextual-based conversation for certain tasks; while this

frees up staff for more complex requests, it can equally cause problems if

the chatbot hasn’t been configured for the optimal experience! In a sense,

we should place greater emphasis on making the customer feel special, if

we decide to use bots – they can perform mundane tasks well, but we will be

seen as being cheap and put customers off, if they feel that our use of bots is

anything less than perfect. This is particularly important with heavyweights

such as Gartner predicting that 30% of browsing will be done by users using

screenless devices by 2020. It means that the use of chatbots will increase,

particularly in the social media arena – after all, where is it most likely to

find people, particularly if they need to complain about poor service?

 Things to consider when building a chatbot
Okay, so we’ve decided we have a need to build something, but what

should it be and whom should it serve?

These are good questions; building a bot shouldn’t be seen as an

excuse to save money, but something that can help augment existing

human staff and allow them to take on more demanding or complex

queries. It doesn’t matter which niche we are considering though. There

are a handful of best practices we should consider as some of the first steps

to building a bot:

• Would your customers or users want to be served only

by real humans?

• Is your use case better served by an alternate channel –

for example, a web site or a native application?

Chapter 4 Combining the apis: building a Chatbot

93

• How will you let the end user know they’re chatting

with a bot or a live agent? The conversation may start

with the former, but there could be occasions where

they need to be handed off to a live agent.

• How many tasks does the bot need to handle? Your bot

might collect a variety of information but ideally should

be responsible for handling one or two items per flow –

it is a case of quality over quantity!

• How much of an impact would bots make for your

environment – are the tasks such that automating just

a handful provides a real benefit for your company, or

could it be a case of the return doesn’t justify the effort?

At this point, you might be right for thinking that we’ve diverged a

little from our main topic of using the Speech API, but there is a good

reason for this: there is little point in adding speech capabilities if the basic

dialog is less than optimal! It’s important to consider not just topics such

as the voice to use and whether they can choose which to use, but also

that the conversation seems natural and includes the right phrases and

that our responses match the kind of phrases customers would use when

interacting with our chatbot.

 Downsides to bots
Creating a bot, and particularly one that can speak, is good, but they

can suffer from one potential drawback – they can only simulate human

interaction. A bot is only as good as its configuration; functionally it may be

perfect, but if the phrases and terms used are badly chosen, then this will

only serve to put off humans!

It doesn’t matter if they can speak – indeed, adding speech capabilities

will only serve to frustrate customers even more if their conversation

isn’t natural. This will be particularly felt by anyone who relies on vocal

Chapter 4 Combining the apis: building a Chatbot

94

interaction to complete tasks online. It means that as part of creating

something using the Speech APIs we’re exploring in this book, we

absolutely need to give thought to topics such as the right voice to use, plus

the correct terminology or phrasing when configuring our bot.

This is one area where it pays to perform lots of research – the more

you can undertake, the better! As part of this, it’s important to appreciate

the types of bots that are available, as this will have an impact not only

on how we build them but also when setting up their speech capabilities.

Bots come in all manner of guises, but can be broadly separated into two

different types. Let’s take a look at each in turn and how they stack up

against each other in more detail.

 Different types of chatbots
To help understand and minimize the drawbacks of using bots, we can

broadly categorize them into two distinct groups: transactional (or

stateless) and conversational (stateful). What does this mean for us? Well,

there are some key differences:

• Transactional or stateless bots don’t require history –

each request is treated as discrete, and the bot only

needs to understand the user’s request to take action.

Transactional bots are great for automating quick

tasks, where we’re expecting simple outcomes, such as

retrieving a current Internet bandwidth usage.

• Conversational or stateful bots rely on history and

information collection to complete tasks. In this

instance, bots may ask questions, parse the response,

and determine the next course of action based on

the response from the user. This type of bot is perfect

for automating longer, more complex tasks that

Chapter 4 Combining the apis: building a Chatbot

95

have multiple possible outcomes, but which can be

anticipated during construction.

With this in mind, let’s turn this into something more practical. We’ve

already indicated that each bot type is better suited to certain tasks; some

examples of what these tasks would look like are shown in Table 4-1.

Table 4-1. Some practical examples of bot types

Type of bot Some practical examples of usage

Transactional
bots

transactional bots are not able to remember previous interactions

with the user and can’t maintain extended dialog with the user:

• alexa turning the lights off, playing a song, or arming/

disarming house alarms

• Confirming an appointment over sms

• google assistant checking and reporting the weather

Conversational
bots

Conversational bots maintain the state of the conversation and

carry information between turns of the conversation:

• making a reservation at a restaurant – the bot needs to

know the size of the party, the reservation time, and seating

preferences to make a valid reservation

• Conducting a multiple-question survey

• interviewing users to report issues

Phew! We’re almost at a point where we will start to build ours.

I promise! I know it seems like we’ve covered a lot of theory, but it’s

important: adding speech capabilities is only half the battle. The deciding

factor (to use a battle term?) is what we need to do to ensure that when our

bot talks, it comes across as natural and works as expected for both our

customers and our initial requirements.

Chapter 4 Combining the apis: building a Chatbot

96

if you would like to delve more into the theory behind building
chatbots, there is a great article on the Chatbots Magazine web site,
at https://chatbotsmagazine.com/how-to-develop-a-
chatbot- from-scratch-62bed1adab8c.

Okay, we’re finally done with the theory. Let’s move onto more

practical matters! We’re going to construct a simple example that renders

responses both verbally and visually on screen; as with any project, let’s

begin by setting the background to what we will be constructing in this

chapter.

 Setting the background
A friend of mine sent me an email, with a rather intriguing request:

“Hey Alex, you know I run a small online outfit selling
Raspberry Pi kit, right? Well, I would really like to add some-
thing to help my customers find kit easier! I know you love
experimenting with stuff. Fancy giving me a hand to create
something? I’m keen to make it innovative if I can. Any ideas?”

Okay, I confess: that was a fictitious friend, but that aside, this is just

the kind of thing I love doing! Had this been a real request though, my

immediate answer would be to create a chatbot, where we can add in

speech capabilities. For the purposes of this book, we’ll keep this simple

and limit it to searching for different Raspberry Pi version 4 boards. The

same principles could be used to search for other related products (we’ll

touch more on this toward the end of the chapter).

The product we will build is a chatbot for my fictitious friend Hazel

(yes, the name should be familiar from earlier demos), who runs a

company called PiShack. Our demo will be largely text-based, but include

some simple elements such as displaying images and basic HTML markup

Chapter 4 Combining the apis: building a Chatbot

https://chatbotsmagazine.com/how-to-develop-a-chatbot-from-scratch-62bed1adab8c
https://chatbotsmagazine.com/how-to-develop-a-chatbot-from-scratch-62bed1adab8c

97

within our conversation. The chatbot will be used to find the Raspberry 4

board products, then display the chosen one on screen, and provide a link

and basic stock information to the customer.

 Keeping things in scope
As with any project, we need to define the parameters of what should be

included, to help keep things on track.

Thankfully this will be very straightforward for our demo; we’ll have

a basic conversation that leads the customer to choose from one of three

board types. Based on what they select, we will then display an image for

that board type, along with a part number and back stock availability.

We will then simulate showing a link to a fictitious product page; for this

demo, we won’t include the product page. Suffice to say, this could be

linked to any page within an existing project, as this will just be a standard

link – the exact one can be generated, depending on the response from our

customer.

Okay, with this in mind, let’s crack on. Now that we’ve set the scene,

we need to architect the various elements of our demo, so we can see how

they will come together in more detail.

 Architecting our demo
For our demo, I’ve chosen to keep things simple, with an emphasis on

not using extra tools unless necessary. There are several reasons for this:

the primary one is that introducing dependencies for our chatbot could

introduce software that is incompatible with other elements within our

project.

There are dozens of different chatbot libraries available, but the one

I’ve decided to use for this project is RiveScript. Available from https://

www.rivescript.com/, it’s an open source scripting language, with a host

of different interpreters for languages such as Python, Go, or, in our case,

Chapter 4 Combining the apis: building a Chatbot

https://www.rivescript.com/
https://www.rivescript.com/

98

JavaScript. Although this is something of a personal choice, there are

several benefits from using this library:

• It (the interpreter, not the library) is written in pure

JavaScript, so dependencies are minimal; a version is

available to run under Node.js if desired, although this

isn’t necessary for simple use.

• Its syntax is really easy to learn – you can put together

a basic configuration file very quickly, leaving you

more time to fine-tune the triggers and responses for

interacting with the chatbot.

• It’s not produced by a large commercial company

that requires you to edit XML files or complex

configurations online – all you need is a text editor and

your imagination!

• It’s open source, so can be adapted if needed; if you

have an issue, then other developers may be able to

help provide fixes, or you can adapt it to your own

needs if desired.

• It can be hosted on a Content Delivery Network (or

CDN) link for speedy access from a local point; content

delivered in this manner will also be cached, which

makes it faster. If needed, we can also provide a local

fallback to cover if the CDN link is nonoperational.

At this point, it’s worth asking one question: what other options could

I use? There are dozens out there, but many rely on complex APIs or have

to be managed online. This isn’t necessarily a bad thing, but it does add an

extra layer of complexity when starting out with chatbots, and particularly

with the Web Speech APIs! That aside, let’s take a moment to cover off

some of the alternatives that may be of interest, either now or in the future,

in more detail.

Chapter 4 Combining the apis: building a Chatbot

99

 Alternative tools available
When researching for this book, I came across dozens of different tools

and libraries that offer the ability to construct chatbots – many of these I

elected not to use for the demo we’re about to build, primarily because

they hadn’t been updated for some time, involved complex setups, had to

be set up online, or were tied into a proprietary offering which would make

it difficult to move away from if circumstances changed.

This said, I did come across some interesting examples which were not

so complex to set up and could be worth checking out:

• Wit.ai – available from https://wit.ai/, this

Facebook- owned platform is open source and is easy

to set up and use. It has various integrations available,

including for Node.js, so will work fine with the Speech

Recognition and Synthesis APIs.

• BotUI – this is a simple and easy-to-use framework

available from https://botui.org/; its structure for

progressing through each trigger/response is a little more

rigid than RiveScript and requires each pair to be built

into the main code, rather than in a configuration file.

• Botpress – if you’ve spent any time developing code

for CMS systems, then you will have no doubt heard of

WordPress. Hosted at https://botpress.io/, Botpress

describes itself as the “WordPress of Chatbots,” where

anyone can create and reuse modules for chatbots. It’s

a mixed offering – while primarily being open source,

it also has licensing available for more enterprise-level

needs, so it will be a good way to advance in the future.

This library also has a visual editor which makes it

easy to build the initial chatbot triggers and responses,

before integrating with something like Node.js.

Chapter 4 Combining the apis: building a Chatbot

https://wit.ai/
https://botui.org/
https://botpress.io/

100

The important thing to note is that integrating the Speech APIs into

a chatbot is unlikely to be a simple matter of “flicking a switch” or setting

a configuration parameter. Any such integration will require effort – how

much will depend on the chatbot library we use!

Okay, the next step in getting set up is adding syntax highlighting

support for our text editor. RiveScript offers plugins for some of the more

popular ones such as Sublime Text or Atom. Let’s quickly cover this off,

before moving onto more pressing matters!

if you use a more specialist editor or one of the ones not listed at
https://www.rivescript.com/plugins#text-editors, then
feel free to skip ahead to the next section; this won’t affect how the
demo operates.

 Adding text editor support
Although we can use pretty much any syntax highlighter when editing

RiveScript files (they are just plain text files, after all), adding a dedicated

one will absolutely help with making your code easier to read.

RiveScript offers several for the more popular editors, at https://www.

rivescript.com/plugins#text-editors; this includes Atom, Sublime

Text, and Emacs. Figure 4-1 shows an example of how code will look when

run in Atom with the plugin installed (shown overleaf).

Chapter 4 Combining the apis: building a Chatbot

http://www.rivescript.com/plugins#text-editors
http://www.rivescript.com/plugins#text-editors
http://www.rivescript.com/plugins#text-editors

101

As I am sure you will agree, it certainly helps with reading (and

subsequently understanding) the code! Assuming you’ve installed a

suitable syntax highlighter (and screenshots later in this chapter will show

examples from within Sublime Text), let’s move on and complete the rest

of the preparation process.

 Getting tools in place
For our next project, we’re going to need to avail ourselves of a few

additional tools to help with development and running. Let’s take a look at

what we need:

• We’ll need some web space which has been secured

using HTTPS access – you can use web space on

a test server or install a local web server such as

MAMP PRO for this purpose. This web server is

Figure 4-1. A screenshot of RiveScript syntax in a text editor

Chapter 4 Combining the apis: building a Chatbot

102

particularly good at creating SSL certificates; you will

need something to allow the Web Speech API to run

correctly! It’s a commercial offering available from

https://www.mamp.info, for both the Windows and

Mac platforms. If you prefer to do this manually, then

I would suggest trying the scripts by Daksh Shah,

available on his GitHub repo at https://github.com/

dakshshah96/local-cert- generator/. This contains

instructions for installing the certificates for Linux

and Mac; search online using “install certificates for

windows” for articles on how to do this for Windows.

• To make things easier, we’re going to set up a project

folder for this chapter – for the purpose of this book, I

will assume you call it speech, and it is on your local

PC’s hard drive. If you use something different, please

adapt steps in the demo to suit.

• The main tool we will use for building our chatbot is

the RiveScript library, available from https://www.

rivescript.com/. This is a JavaScript-based language

for writing chatbots, which comes in a variety of different

interfaces and is easy to learn. The library comes in CDN

format or can be installed using Node.js – to keep things

simple, we’ll use the former during our demo.

Note For the purposes of this demo, i will assume the project area
is set to work under https://speech/; if yours is different or you
prefer to continue using Codepen, then the demos will work in this
environment; using a local setup will give you more control.

Chapter 4 Combining the apis: building a Chatbot

https://www.mamp.info
https://github.com/dakshshah96/local-cert-generator/
https://github.com/dakshshah96/local-cert-generator/
https://www.rivescript.com/
https://www.rivescript.com/

103

Okay, with these three admin tasks in place, let’s move on and make a

start with constructing our demo!

 Building our chatbot
Our demo will contain a fair amount of code, so we’re going to put it

together over the course of two exercises; it will give you a chance to take a

breather in between before we continue with the second part. The second

part will take care of configuring the chatbot with our chosen questions

and answers; before we get there, let’s first take a look at setting up the

functionality for our chatbot.

BUILDING THE CHATBOT, PART 1: THE FUNCTIONALITY

the first step in our demo is to get hold of the latest copy of rivescript – it’s

available from https://www.rivescript.com. For the purposes of this

exercise, we’ll use the Cdn version available from unpkg.com, which is

already set up in the html markup file.

there is a version also available for node.js – details are listed at

https://www.rivescript.com/interpreters#js.

let’s crack on with building the first part of our demo:

 1. We’ll begin by extracting a copy of the chatbot folder from the

code download that accompanies this book; save it to the root

of our project area.

 2. inside this folder, create a new file in the js subfolder – save

this as script.js.

Chapter 4 Combining the apis: building a Chatbot

https://www.rivescript.com
https://www.rivescript.com/interpreters#js

104

 3. We’ll use this to set up the functionality for our chatbot, for

which we will have a fair chunk of code. don’t worry – we will

go through it block by block! We’ll start first by declaring the

global variables that we will use throughout the demo, along

with initiating an instance of rivescript:

let bot = new RiveScript();

const message_container = document.querySelector

('.messages');

const form = document.querySelector('form');

const input_box = document.querySelector('input');

const question = document.querySelector('#help');

const voiceSelect = document.getElementById('voice');

 4. next, miss a line and then add in the following functions and

function call – these take care of loading the voices into our

demo:

function loadVoices() {

 var voices = window.speechSynthesis.getVoices();

 voices.forEach(function(voice, i) {

 var option = document.createElement('option');

 option.value = voice.name;

 option.innerHTML = voice.name;

 voiceSelect.appendChild(option);

 });

}

loadVoices();

// Chrome loads voices asynchronously.

window.speechSynthesis.onvoiceschanged = function(e) {

 loadVoices();

};

Chapter 4 Combining the apis: building a Chatbot

105

 5. the next two functions complete the first part of our demo –

the first looks after basic error handling, while the second is

responsible for vocalizing content when requested. add in the

code below the previous step, leaving a blank line in between:

window.speechSynthesis.onerror = function(event) {

 console.log('Speech recognition error detected:

' + event.error);

 console.log('Additional information: ' + event.

message);

};

function speak(text) {

 var msg = new SpeechSynthesisUtterance();

 msg.text = text;

 if (voiceSelect.value) {

 msg.voice = speechSynthesis.getVoices().

filter(function(voice) {

 return voice.name == voiceSelect.value;

 })[0];

 }

 speechSynthesis.speak(msg);

}

 6. at this point, we move onto setting up and configuring our

chatbot – we start with declaring a constant for importing our

triggers and responses. this next line needs to go in after the

speak() function, leaving a blank line in between:

const brains = ['./js/brain.rive'];

Chapter 4 Combining the apis: building a Chatbot

106

 7. next, go ahead and add in this event handler – this manages

the submission of each question from anyone using the chatbot:

form.addEventListener('submit', (e) => {

 e.preventDefault();

 selfReply(input_box.value);

 input_box.value = “;

});

 8. We now need to render each question (or trigger) and the

appropriate response on screen – this is the responsibility of

the next two functions:

function botReply(message){

 message_container.innerHTML += `<div

class="bot">${message}</div>`;

 location.href = '#edge';

}

function selfReply(message){

 var response;

 response = message.toLowerCase().replace(/

[.,\/#!$%\^&*;:{}=\-_`~()]/g,"");

 message_container.innerHTML += `<div

class="self">${message}</div>`;

 location.href = '#edge';

 bot.reply("local-user", response).then

(function(reply) {

 botReply(reply);

 speak(reply);

 });

}

 9. We’re almost at the end of the script part of this demo; we have

two more functions and an event handler to add in. leave a line

blank after the previous step and then add in the following:

Chapter 4 Combining the apis: building a Chatbot

107

function botReady(){

 bot.sortReplies();

 botReply('Hello, my name is David. How can I be of help?');

}

function botNotReady(err){

 console.log("An error has occurred.", err);

}

question.addEventListener("click", function() {

 speak("hello. my name is David. How can I be of

help?");

 bot.loadFile(brains + "?" + parseInt(Math.random()

* 100000)).then(botReady).catch(botNotReady);

});

 10. at this point, go ahead and save the file – we can minimize it

for now, while we move onto the next part of this demo.

At this stage, we have a semi-complete demo – if we run it now though,

it won’t do a great deal! The reason for this is that we still have one part

remaining to add in: the questions and answers for our chatbot. Although

setting up this part is relatively straightforward, there is still a fair amount

of code to go through. Let’s dive in and take a look in detail.

 Configuring our chatbot
To get our chatbot operational, we’ll be making use of the RiveScript

library; it comes with different interpreters for various languages, such as

Python, Go, or JavaScript.

It’s an easy language to learn, although it does have one quirk that

takes a little getting used to: all of the questions that we preconfigure our

bot with must be in lowercase! Thankfully this isn’t an issue when it comes

to displaying them on screen; I will explain more at the end of this next

demo, but let’s focus on getting our chatbot configured and ready for use.

Chapter 4 Combining the apis: building a Chatbot

108

BUILDING THE CHATBOT, PART 2: THE FUNCTIONALITY

let’s complete our demo by adding in the missing questions and answers for

our chatbot. We’ll work through adding in each block, but to help with editing, i

will also include screenshots at various points, so you can check progress:

 1. First go ahead and create a blank file, saving it as brain.rive

in the js subfolder of the chatbot folder we created in the first

part of this demo.

 2. at the top of the file, go ahead and add in this line – this

forces the rivescript compiler to work with version 2.0 of the

rivescript specification:

! version = 2.0

 3. our file contains a simple rivescript function, which we use to

ensure that the name of our customer is kept in title case (more

on this later in this chapter). leave a line and then add in the

following code:

> object keepname javascript

 var newName

 for (var i = 0; i < args.length; i++) {

 newName = args[i]

 }

 return newName.charAt(0).toUpperCase() + newName.slice(1)

< object

 4. next up, we start adding in each of the statements (which come

in pairs – a question and answer). You will notice that each

starts with either a + or –; the former is the question or trigger,

and – designates a response. go ahead and add in the first one,

where the customer may say hello to the bot and receives an

appropriate response:

Chapter 4 Combining the apis: building a Chatbot

109

+ hello

- hello, what is your name?

 5. the next triplet of statements is a little more complex – this

time, the customer gives their name and says what they are

looking for:

+ hi my name is * im looking for a raspberry pi 4

- <set name=<star>>Nice to meet you, <call>keepname

<star></call>. No problem, I have 3 available. Are you

looking for a particular version?

- <set name=<star>>Nice meeting you, <call>keepname

<star></call>. No problem, I have 3 available. Are you

looking for a particular version?

at this point, if all is well, we should have the following code in our brain.rive

file, as indicated in Figure 4-2.

Figure 4-2. The first part of our brain.rive file

Chapter 4 Combining the apis: building a Chatbot

110

let’s continue with the next part:

 6. the next question in the list contains a conditional statement –

this time, we’re asking which version the customer prefers to

look at:

+ * versions do you have available

- I have ones that come with 1 gigabyte 2 gigabyte

or 4 gigabyte RAM. Which would you prefer?

 7. in this next pair of statements, the customer confirms which

version they want to see; we display an appropriate image of

that product:

+ i would prefer the (1|2|4) gigabyte version

- <set piversion=<star>>Excellent, here is a picture:

<img src="img/<star>.webp">

let’s pause for a second. if all is well, Figure 4-3 shows the code we should

now have as the next part of our brain.rive file.

Figure 4-3. The second part of our brain.rive file

Chapter 4 Combining the apis: building a Chatbot

111

let’s resume adding our code:

 8. next up is a straightforward question – this time, we’re

checking to see if the desired product is in stock:

+ is this one in stock

- Yes it is: we have more than 10 available for

immediate despatch

 9. this next part is the most complex – here, we’re building up

some brief details about the product and a link for the customer

to navigate directly to the product page for the product:

+ how can i get it

- No problem, here is a link directly to the product

page for the 4 gigabyte version of the Raspberry

Pi <get version>:

^ <p><h2>Raspberry Pi 4 -

<get piversion>GB RAM</h2><img src="img/<get piversion>.

webp"></p><p class="stock">More than 10 in stock</

p><p class="stockid">PSH047</p><a class="productlink"

href="rasp<get piversion>.html">Go to product page

^ Just click on Add to Cart when you get there, to add it

to your basket. Is there anything else I can help with

today?

We can see a clearer view of how our code should look in Figure 4-4.

Chapter 4 Combining the apis: building a Chatbot

112

 10. We then finish with two questions – the first acknowledges no

further help is required, and the second is a generic catch-all in

case our chatbot has had a problem understanding a question:

+ no thats fine thankyou

- You're welcome, thankyou for choosing to use PiShack's

Raspberry Pi Selector tool today

+ *

- Sorry, I did not get what you said

- I am afraid that I do not understand you

- I did not get it

- Sorry, can you please elaborate that for me?

We can see how the final part of our brain.rive file should look in Figure 4-5.

Figure 4-5. The final part of our brain.rive file

Figure 4-4. The next block of code in our brain.rive file

Chapter 4 Combining the apis: building a Chatbot

113

 11. at this point, go ahead and save the file – we can now test the

results! For this, browse to https://speech/chatbot, then

click ask a question, and start to enter information as shown in

the extract in Figure 4-6.

Figure 4-6. Our completed chatbot, at the start of a conversation

Chapter 4 Combining the apis: building a Chatbot

114

When you test your demo, you may find a particular quirk of using

RiveScript – the brain.rive file is cached, which can make it harder to be

sure you are running an updated version if you then make changes to it!

There is a quick trick to help with this, although it only works if you are

using Chrome. Simply click and hold down the reload button, to force it to

display an option to clear cache and perform a hard reload, as indicated in

Figure 4-7.

Figure 4-7. Performing a hard reload using Chrome

Okay, we’re done with build, and at this point we should now have the

basis of a working chatbot that vocalizes each response and displays it on

screen. Much of the code we’ve used for the former we’ve already seen

from earlier in this book. However, this demo does showcase some useful

points, so let’s dive in and explore this code in detail.

 Exploring the code in detail
If we were to take a closer look at the code in the demo we’ve just created, I

can imagine what your first response might – yikes! Yes, the code does look

a little complex, but in reality it’s simpler than it might first seem. Let’s tear

it apart block by block, beginning with our HTML markup.

Chapter 4 Combining the apis: building a Chatbot

115

 Dissecting our HTML markup
Much of what is in this file is fairly straightforward – once references to

the CSS styling files have been defined, we set up a #page-wrapper div

to encompass all of our content. We then create a .voicechoice section

to house the drop-down that allows us to choose which language to use,

along with the initial button to ask a question.

Next up comes the .chat section, which we use to render our

conversation with the bot; the messages are rendered in the .messages

<div> element. We then have a form to submit each question, before

closing out with references to the RiveScript library and our custom

script.js file.

 Pulling apart script.js: The Web Speech API
We’ve covered the easy part of our demo, which is the markup. This is where

things get more interesting! The script.js and brain.rive files are where

most of the magic happens – in the former, we combine the speaking/audio

code with our chatbot functionality, while in the latter we store the various

questions and responses for our chatbot. Let’s crack open a copy of the

script.js file, to see how our chatbot demo works in more detail.

We begin by initializing an instance of RiveScript as an object, before

defining a series of variables, to cache various elements in our HTML

markup. The first function in our code, loadVoices(), takes care of

calling the Speech Synthesis API to get the various voices we will use

in our code, such as English (Great Britain). It’s worth noting that we

specify references to call this function twice; this is to allow for some

older browsers (particularly Chrome), which require us to load the drop-

down asynchronously. In most cases, we will simply call loadVoices();

for those browsers that need it, the drop-down will be populated using

the onvoiceschanged event handler from the window.SpeechSynthesis

interface.

Chapter 4 Combining the apis: building a Chatbot

116

Moving on, the next function we create is the onerror event handler,

again from the window.SpeechSynthesis interface; this acts as a basic catch-

all for any errors that crop up when using the interface. For now, we simply

render out the error type given using event.error, along with the error.

message. It’s worth noting that event.error will give a specific error code,

such as audio-capture. Any error.message statement should be defined by

us as developers; the specification does not define the exact wording to use.

a list of error codes is available on the mdn site at https://
developer.mozilla.org/en-US/docs/Web/API/
SpeechRecognitionError/error.

The final function in this part of our code breakdown is speak() –

this is where we vocalize our content! This starts by initializing a new

instance of SynthesisUtterance, where we then define the text to use

(i.e., the response from our bot), along with the voice that should be used.

Assuming no issues are found, then it is spoken by the API, using the

speechSynthesis.speak(msg) statement.

Phew! We’ve done the largest part of our demo, although there is still

one part left: configuring our bot! I would recommend taking a breather at

this stage – perhaps go get a drink or get some fresh air. Once you’re ready

to continue, let’s crack on with exploring the statements used to configure

our bot in more detail.

 Understanding how our bot is configured
Although most of the magic happens in our script.js file, our demo

would be incomplete without the bot configuration file, brain.rive.

A quick look inside this file and we should recognize some elements –

after all, most of it looks like plain text, with some basic JavaScript code at the

start, right? Yes, you would be correct in saying this, but RiveScript has some

Chapter 4 Combining the apis: building a Chatbot

https://developer.mozilla.org/en-US/docs/Web/API/SpeechRecognitionError/error
https://developer.mozilla.org/en-US/docs/Web/API/SpeechRecognitionError/error
https://developer.mozilla.org/en-US/docs/Web/API/SpeechRecognitionError/error

117

unusual character keywords that we need to be aware of in this code. Let’s go

through it bit by bit, starting from the top of our code – before we do so, now

is a good opportunity for a quick heads-up on how RiveScript works.

 Exploring how RiveScript works: A summary
Any configurations we create using RiveScript are stored as .rive files.

A common feature in .rive files is that you will see most lines starting with

either an exclamation mark, a plus sign, or a minus sign, with arrow heads

and carets used a couple of times, as in our example. This is important,

as these define the type of statement in use. The ones we’ve used in our

example are listed in Table 4-2.

Table 4-2. Types of special characters used in brain.rive

Character Purpose

+ or plus sign this denotes a trigger question from the user.

* or star this acts as a placeholder to accept data from the user, such

as a name or questions like “which versions…” or “what

versions…” (as in our example).

- or minus sign this acts as the response from the bot to our user.

() and | or brackets

and pipe symbol

When used together, this denotes a choice – rivescript will act

on what it receives in a similar fashion to the star placeholder,

but this time, we’re limiting choice to one of three options,

namely, 1, 2, or 4.

^ or arrow head this is a newline character, where responses are best served

over multiple lines.

! or exclamation

mark

this denotes a rivescript directive, such as specifying which

version of the specification to use.

In most cases, we will likely use a plus or minus sign (as in our example).

With this in mind, let’s explore the statements one by one in more detail.

Chapter 4 Combining the apis: building a Chatbot

118

 Dissecting the brain.rive file in detail
We start with ! version=2.0, which tells RiveScript that we’re working

on the 2.0 specification of the library; if this is set to a lower number (i.e.,

earlier version), then we risk our code not working as expected.

For now, we’ll jump to what should be line 12, where we have +

hello – we’ll come back to the code within the > object...< object tags

shortly. The code at line 12 should be self-explanatory; at this point, the

user will enter hello as our initial trigger, to which the bot will respond

accordingly.

The next block is a little more interesting. Here, we’ve specified

a trigger question using the + sign; in this we use the star. A star is a

placeholder for a specific piece of text given by the user – if, for example,

they had used the name Mark, then the text given would equate to "hi

my name is Mark im looking for a raspberry pi 4." This by itself is

straightforward, but take a look at the response: what is that <call> tag I

see? And what about the <set name=....> code too…?

The former is a call to what in this case will be a RiveScript/JavaScript

function. Remember the code I said we would skip over at the start of this

section? Well, that is the code for this function – we’re using it to make

sure that no matter what name is passed to it, it will always be rendered

on screen with the first letter capitalized. It’s worth noting that RiveScript

will always format variables in lowercase when used in triggers; we use this

function to display something more suitable to the user.

The next three questions follow similar principles, where trigger text

is in lowercase, and we use a star placeholder in the first of this bunch

of three questions. There is one exception though: the use of the pipe

and brackets. Here we’re specifying a number of options that could be

recognized; unlike the star where anything might match the statement,

the only matches allowed will be the numbers 1, 2, or 4. We then make

Chapter 4 Combining the apis: building a Chatbot

119

use of whichever number is matched in the <star> placeholder to set a

variable called piversion (which we use a little later on), as part of an

interpolated tag to display the appropriate image for the chosen version of

the Raspberry Pi board.

Moving on, the next block is the largest – it looks scary, but in

reality, it’s not that complex! There are two things to note: First, we <get

piversion> and use this to render the product name and image on screen,

in a small block of HTML markup. The second is the use of the ^ or the hat

symbol; this allows us to split the response from our bot over several lines.

I’m sure you can imagine a block of text like ours would look dreadful if

combined into one line. This makes it easier for us to view it on screen.

We then close out with two triggers – the last is from the customer

to confirm that’s the only thing they need help with, along with an

appropriate acknowledgment from the bot. The last trigger is a generic

catch-all, which kicks in if there is a problem: this is likely to be if the

user has entered something that doesn’t match one of our pre-scripted

responses. We’ve provided a number of alternatives that the bot can use;

it will automatically pick one in turn, if it needs to use it in a conversation

with a user.

Phew! That was a lengthy explanation. Well done if you managed to get

this far! There was a lot to cover in this demo, but hopefully this shows you

how we can make use of the Speech API to add an extra dimension when

using automated chatbots. We’ve only touched the surface of what could

be possible, let alone what we should consider; there are a few important

points in the latter, so let’s pause for a breather. Go get that cup of coffee

or drink, and let’s continue with delving into some of the areas where we

could develop our demo into a more feature-complete example.

Chapter 4 Combining the apis: building a Chatbot

120

 Taking things further
Over the course of this chapter, we’ve constructed a simple chatbot

that allows us to choose from one of three Raspberry Pi 4 boards and

enquire as to their availability and how we might purchase one. This is a

straightforward request, but as you’ve probably seen, there is some room

for improvement!

On that note, how might we go about fine-tuning the experience? Well,

one area is the trigger questions we’ve used; they are somewhat rigid and

do not feel as natural or intuitive as they could be in our demo. This is one

area to consider. Here are a few more ideas to get you started:

• Add multiple-language support – although English

is spoken widely, not everyone can speak it! It also

introduces a risk of misunderstanding, due to cultural

differences; being able to converse in a customer’s

native tongue removes that risk and makes them feel

more welcome.

• Make it a two-way process – we’ve focused on just

rendering our responses visually and verbally, but what

about making it so that you can verbalize your question

as well? This will particularly appeal to those who

may have a handicap, where using a keyboard will be

difficult or impossible.

We’ll be looking at something similar when we come to build our
(simple) clone of alexa, later in this book.

• Fine-tune the phrases used – the phrases we’ve

used serve a purpose, but I think there is room for

improvement. For example, we might contract certain

Chapter 4 Combining the apis: building a Chatbot

121

words, such as “I am” to “I’m,” yet our chatbot doesn’t

allow for this! Granted this is probably more to do with

how we configure our chatbot, but don’t forget what we

put in there will ultimately affect how it comes out as

speech.

• Include other products – it’s important to consider how

best we would go about doing this and the changes

needed to Speech Synthesis config; the changes need to

be such that it makes it easier to add other products in

the future, with the minimum of fuss.

I am sure there will be more that we can or might want to do to develop

our project, but for now, I want to concentrate on one particular change:

adding language support.

One of the great things about the Web Speech APIs is that we’re not

limited in any way to just English. We can absolutely add in support for

a host of different languages! To prove this, and for our next demo, we’re

going to update the original chatbot by adding French language support.

Let’s take a look to see what changes are needed to effect this update in

more detail.

 Adding language support
For this demo, we’ll use an existing copy of the original chatbot, but add

in language support – I’ve chosen French as it’s one I can speak. We

can easily adapt the code to use a different language, or more than one

language as needed. There are a few steps we will go through to update our

code. Let’s take a look at what is required in more detail.

Chapter 4 Combining the apis: building a Chatbot

122

the demo makes use of flag icons from www.gosquared.com/
resources/flag-icons/ – you can use your own if you prefer
using something different.

 Updating our demo
To update our demo, we would need to perform four changes:

 1. The first is to update our markup and styling so that

we add in flags for each country we use – in this

case, US English and French.

 2. We need to update the Speech Synthesis

configuration to accept our language choice, based

on setting a variable.

 3. Next come translations – we have to create a

translated version of the brain.rive configuration

file into each new language and reconfigure

our script.js file to import each version as

appropriate.

 4. The last change required will be to add event

handlers to set SpeechSynthesisUtterance.lang to

our chosen language, as appropriate.

With this in mind, let’s dive in and set up our demo! As mentioned

earlier, we will be adding in French language support – feel free to change

this to another language if you prefer, but you will need to manually update

the translated text in the brain.rive file.

Chapter 4 Combining the apis: building a Chatbot

http://www.gosquared.com/resources/flag-icons/
http://www.gosquared.com/resources/flag-icons/

123

ADDING LANGUAGE SUPPORT

before we begin, there are a couple of things we need to do:

 1. take a copy of the chatbot folder you created from the

original demo earlier in this chapter, and save it as chat

language at the root of our project folder.

 2. From a copy of the code download that accompanies this book,

extract the brain config folder and copy the contents into

the js subfolder under the chat language folder. these

contain updated versions of our brain.rive file, in english

and French.

 3. From that same code download, go ahead and extract the img

folder – save it over the top of the img folder within the chat

language folder. this will add the two flag icons that we will

use in our demo.

once you’ve completed this, continue with these steps:

 1. the first set of changes we need to make will be in our

markup – we’re going to introduce two flags as language

selectors. open index.html, look for the line of code starting

<button id="help"..., and then add in this block of code

immediately before it:

<section class="flags">

 <img src="img/en-us.png"

alt="en-us">EN|

 <img src="img/fr-fr.png"

alt="fr fr">FR

</section>

Chapter 4 Combining the apis: building a Chatbot

124

 2. next, add in the disabled attribute to the <button> tag, as

indicated:

<button id="help" disabled>Ask a question</button>

 3. go ahead and save this file – keep it open, but it can be

minimized for now.

 4. at this point, switch to the scripts.js file – we have a few

changes to make here, starting with defining some additional

variables. after the first line of code, add in this declaration, as

highlighted:

let bot = new RiveScript();

let langSupport, intro, brains;

 5. next, we need to cache some more elements as variables –

for this, go ahead and add in the following four lines of code,

immediately after the const question =... line:

const voiceSelect = document.getElementById('voice');

const english = document.querySelector(".en-us");

const french = document.querySelector(".fr-fr");

const voice = document.querySelector(".voicechoice");

 6. now that we’re introducing multi-language support, we can’t

hard-code our initial greetings. instead, we will provide them as

variables, so after the previous block of code leave a line and

add in these two declarations:

const enIntro = "Hello. my name is Hazel. How can I be

of help?";

const frIntro = "Bonjour. Je m'appelle Hélène. Comment

puis-je vois aider?";

Chapter 4 Combining the apis: building a Chatbot

125

 7. scroll down until you reach the speak() function. up until

now, the language was implicitly set as 'en-us'; this needs

to change! For this, look for the speakSynthesis.speak

statement and then alter the last part of this function as indicated:

 })[0];

 }

 msg.lang = langSupport;

 speechSynthesis.speak(msg);

}

 8. next, go ahead and delete the line starting with const brains

= [..., and replace with this:

function setLanguage(langUsed, selIndex, langIntro) {

 voiceSelect.selectedIndex = selIndex;

 langSupport = langUsed;

 intro = langIntro;

 brains = ['./js/brain-' + langSupport + '.rive'];

 question.disabled = false;

}

 9. We now need to add in two functions to take care of what

happens when we click the flags – for this, leave a line and

then drop in the following code:

english.addEventListener("click", function() {

 setLanguage('en-us', 3, enIntro);

 question.innerHTML = "Ask a question";

});

french.addEventListener("click", function() {

 setLanguage('fr-fr', 8, frIntro);

 question.innerHTML = "Poser une question";

});

Chapter 4 Combining the apis: building a Chatbot

126

 10. there are two more changes to make before we’re done with

editing this file – the next change is to alter the botReady()

function. scroll down to it and then edit as highlighted in the

following:

function botReady(){

 bot.sortReplies();

 botReply(intro);

}

 11. the last change to make will be similar – here we need to alter

how we call our opening salutation. scroll down to the question

event handler and then update the speak() call as indicated:

question.addEventListener("click", function() {

 speak(intro);

 bot.loadFile(brains + "?" + parseInt(Math.random()

* 100000)).then(botReady).catch(botNotReady);

});

 12. save the file – we can minimize it for now.

 13. next, fire up the styles.css file, and add the following styles

at the end of the file:

/* flags */

section.flags {

 width: 150px;

 float: right;

 margin-top: -30px;

}

section.flags img { vertical-align: middle; padding-

right: 5px;}

section.flags img:hover { cursor: pointer; }

button { width: 30%; padding: 10px 15px; }

Chapter 4 Combining the apis: building a Chatbot

127

 14. at this point, go ahead and save the file – we can now test the

results! For this, browse to https://speech/chatbot, then

click ask a question, and start to enter information as shown in

the extract in Figure 4-8.

Figure 4-8. Our updated demo, now with French language support

Phew! Another monster demo! It seems like a lot, but in reality much of

the code will be a one-off change; that will be the code we need to adapt to

convert to using different languages.

Once this is done, then it is a matter of simply adding the flag (and

markup for it), potentially a little styling, and the event handlers needed for

each additional flag. Granted our code could be written more efficiently to

automatically recognize new flags and handle them correctly, but hey, we

have to start somewhere!

Chapter 4 Combining the apis: building a Chatbot

128

 Dissecting the code
Okay, changing tack for a moment, we covered a good few changes in

our latest update, so how does it all fit in? At first glance, it does indeed

look like we’ve made a fair few changes, but in reality, there isn’t anything

outrageously complex in our demo. That said, let’s take a moment to recap

on the changes we made in more detail.

We kicked off by adding in the flag markup; this is standard HTML and

serves to display the flag icons to the right of our chatbot. We’ve added in

a container for this – we can easily add in more lines in the future, which

point to any additional flags we care to add into our demo. At the same

time, we added a disabled attribute to our button – this is to prevent people

from using it until they have clicked one of the flags.

Next up, we added in some additional variables, some of which will be

used to cache the new flag elements on our page. We then added in two

of the most important changes – the first being the salutations. We can’t

hard-code these into our demo, so we need to pass in the appropriate text

as variables (in this case, enIntro and frIntro). We then added in this

line: msg.lang = langSupport; This stops the SpeechSynthesis interface

from assuming language support is US English by default and will be

whatever comes when clicking our chosen flag.

The next three changes are more substantial – here we set a common

setLanguage() function that changes the voiceSelect drop-down to our

chosen language (for French, it selects Google French, and so on). We then

set the appropriate BCP47 code for the SpeechSynthesis interface (e.g.,

"fr-fr" for French) and use this to define which of our brain configuration

files we should use (in this instance, it would be brain-fr-fr.rive). If all

is good, we then remove the disabled attribute from the Ask a question

button, so it is ready for our customer to use.

The next two event handlers call the setLanguage() function we’ve

just defined, into which we pass the appropriate BCP47 code, the index

of the voice to use, and our opening salutation. At the same time, we also

Chapter 4 Combining the apis: building a Chatbot

129

update the text on our “Ask a question” button, to be either in English or

the French equivalent, depending on which button is selected. Although

these both work in a similar fashion, we’ve set them to pass in appropriate

values for the chosen language – these would be duplicated for any

additional languages we decide to add in to our demo.

The remaining two changes are very straightforward – as we can’t hard-

code the opening salutations, we have to pass in the text as variables. Here

we make use of a common intro variable, into which we will have already

passed in the text from our specific language variables earlier in the demo.

 Summary
Chatbots are a technology that is definitely here to stay – research indicates

that their use will explode over the next few years, so it is important

to make sure they can be as effective as possible and that customer

engagement levels do not drop as a result! We’ve covered some important

points about how we can add in the Speech Synthesis API to provide that

extra edge when using chatbots; let’s take a moment to review what we

have learned in this chapter.

We kicked off with some basic theory about why we should use a

chatbot, the different types available, and some of the downsides to using

them, before setting the scene for this chapter’s project demo. We spent a

little time architecting the various elements of our demo, before touching

on some of the alternatives that we may consider using in the future.

We then moved onto the important stage of building our bot – we first

added in text editor syntax support, before running through the main steps

of building and configuring our bot. Once built, we then explored the code

we created in detail, including working through the configuration file that

makes our bot operate correctly. We then rounded out this chapter with

a look at some of the things we could do to improve our bot, with special

emphasis on adding extra language support to our demo.

Chapter 4 Combining the apis: building a Chatbot

130

Phew! A whistle-stop tour through chatbots, for sure! We’ll be revisiting

some of the topics covered in this chapter later, when we try to build an

Alexa clone, but let’s do something a little less demanding for a bit. How

many times have you come across requests to leave feedback on a site?

Usually this might be through an email or even a review section. Chances

are, though, we have to provide our feedback in written form. That is so

old-school. What if we could do it verbally and have the site convert it to

text for us? Yes, it might seem like the height of laziness, but hey, I’m all for

innovation! Intrigued? Well, stay with me, and I will reveal all in the next

chapter.

Chapter 4 Combining the apis: building a Chatbot

131© Alex Libby 2020
A. Libby, Introducing the HTML5 Web Speech API,
https://doi.org/10.1007/978-1-4842-5735-7_5

CHAPTER 5

Project: Leaving
Review Feedback
How often have you felt the need to leave feedback about a shopping

experience? Hopefully you’ve done so at least once; I suspect though there

may be a seed of doubt as to whether someone will pick up on it and do

something about it!

Irrespective of what feedback you leave, chances are you have to type

in your comments; what if you could do so using your voice? Yes, novel

as it may seem, this is a perfect way to show off using the Speech APIs. In

this chapter, we’ll set up a basic product page and add in voice feedback

capabilities, which will automatically transcribe our comments into

written text.

 Setting the scene
Almost every e-commerce site you come across when browsing will have

some form of feedback mechanism – it might be a purpose-built affair or

something provided as a third-party service from a partner or supplier.

At the risk of sounding blasé, it almost doesn’t matter how it is provided.

Any company that transacts on the Internet should provide some form of

mechanism; otherwise, they are likely to lose customers very quickly!

132

In most cases, feedback forms are typically ones where you have

to type out your response – there’s nothing wrong with this, but it is an

old-school way of doing things. Indeed, one might ask, “What other

alternatives are there?” Well, you could use a questionnaire, but ultimately,

it’s the qualitative feedback provided that is just as, if not more, important!

What if we could turn things on their head and provide it verbally? Yes,

you heard me correctly – rather than spend time laboriously typing it out,

let’s articulate it verbally. Sounds complicated, right? Well, perhaps not.

We’ve already covered the basic tool needed for this, in the form of the

Speech Recognition API. Let’s take a look at what is involved in setting this

up and how this could become a really powerful tool.

 Keeping things in scope
To make this project work, you might be thinking that we need lots of extra

tools, right? Wrong, we don’t need any! Before I explain why, let’s quickly

cover off what we will include in this project and what will fall out of scope:

• We will limit our demo to recording and transcribing

spoken feedback and then rendering it on screen – the

latter will be with an appropriate date and time stamp.

• Our demo will initially focus on transcribing feedback

in English, but will look at providing support for at least

one other language, later in this chapter.

• We won’t be recording any of the content left in our

review into a database or submission by email; that falls

outside of the scope of this demo.

With this in mind, let’s take a look at the architecture for our demo, to

see what is involved in more detail.

Chapter 5 projeCt: Leaving review FeedbaCk

133

 Architecting our demo
At the start of the previous section, I made what might seem a bold claim

that we wouldn’t need any additional software in order to set up our

feedback: it’s time to make good on that promise! Well, here goes.

In a sense, we don’t need any extra software – the core functionality

can be provided by using the Speech Recognition API and configuring

it using standard features to record and transcribe spoken content. If

however we did want to do things such as recording that feedback for later

perusal, then yes, we would clearly need a suitable storage system and

appropriate middleware to parse and store the content. However, that

falls outside of the scope of this book – we’ll focus on just getting content

transcribed and rendered on screen.

 Building our review panel
Now that we’ve covered the basic parts of our architecture, let’s begin

building our demo – we’ll focus on constructing the core review panel first,

before exploring how to add in multi-language support later in the book.

It’s important to note that we will focus mainly on the JavaScript

required to make our demo work – all of the HTML and CSS styling will

come preconfigured, directly from the code download that accompanies

this book.

BUILDING THE REVIEW PANEL

the first stage in this chapter’s project is to construct the review panel, but

before we get started, there is one thing we need to do. go ahead and extract

a copy of the reviews folder from the code download that accompanies this

book – save it to our project area.

with this in place, let’s make a start coding our demo:

Chapter 5 projeCt: Leaving review FeedbaCk

134

if you run into any trouble during this demo, then there is a finished
version available in the code download that accompanies this book –
it’s in the reviews folder, under the finished version subfolder.

 1. we’ll start by opening a new file and then saving it as

scripts.js to the js subfolder inside the reviews folder.

 2. we have a good chunk of code to add, which we will do so

block by block – the first is a set of variables that reference

various elements in the doM, plus one we will use as a

placeholder for working out if we are speaking:

var transcript = document.getElementById('transcript');

var log = document.getElementById('log');

var start = document.getElementById('speechButton');

var clearbtn = document.getElementById('clearall-btn');

var submitbtn = document.getElementById('submit-btn');

var review = document.getElementById('reviews');

var unsupported = document.getElementById('unsupported');

var speaking = false;

 3. next, we need to set up the basic frame of our script – this we

use to work out if our browser supports the Speech recognition

api. Leave a blank line after the variables and then add this block:

window.SpeechRecognition = window.SpeechRecognition ||

window.webkitSpeechRecognition || null;

if (window.SpeechRecognition === null) {

 unsupported.classList.remove('hidden');

 start.classList.add('hidden');

} else {

 ...add code in here...

}

Chapter 5 projeCt: Leaving review FeedbaCk

135

 4. we can now start to add our demo code – we begin by initialing

and configuring an instance of the Speech recognition api. go

ahead and replace the ...add code in here... line with this:

var recognition = new window.SpeechRecognition();

// Recogniser doesn't stop listening even if the user pauses

recognition.continuous = true;

 5. with an instance of the api now initialized, we can start to

respond to events. the first one is the onresult handler; for this,

leave a line after the code from step 3 and then add in this

event handler:

// Start recognising

recognition.onresult = function(event) {

 transcript.textContent = ";

 for (var i = event.resultIndex; i < event.results.length;

i++) {

 if (event.results[i].isFinal) {

 transcript.textContent = event.results[i][0].transcript;

 } else {

 transcript.textContent += event.results[i][0].transcript;

 }

 }

};

 6. next up, we need to trap for any instance where (heaven forbid)

we get an error – for this, go ahead and leave a line blank after

the onresult handler and then add in this code:

// Listen for errors

recognition.onerror = function(event) {

 log.innerHTML = 'Recognition error: ' + event.message +

'
' + log.innerHTML;

};

Chapter 5 projeCt: Leaving review FeedbaCk

136

 7. we’re now at one of the most important parts of this demo – a

means to start and stop recording our feedback! we have two

more event handlers to add, so let’s add in the first, which will

fire when we start or stop recording. Leave a line blank after

the code from step 5 and then add in this:

start.addEventListener('click', function() {

 if (!speaking) {

 speaking = true;

 start.classList.toggle('stop');

 recognition.interimResults = document.query

Selector('input[name="recognition-type"]

[value="interim"]').checked;

 try {

 recognition.start();

 log.innerHTML = 'Start speaking now - click to stop';

 } catch (ex) {

 log.innerHTML = 'Recognition error:' + ex.message;

 }

 } else {

 recognition.stop();

 start.classList.toggle('stop');

 log.innerHTML = 'Recognition stopped - click to speak';

 speaking = false;

 }

});

 8. the second event handler takes care of submitting our

transcribed recording as feedback – for this, leave a line blank

after the start handler and drop in this code:

submitbtn.addEventListener('click', function() {

 let p = document.createElement('p');

 var textnode = document.createTextNode(transcript.value);

 p.appendChild(textnode);

 review.appendChild(p);

Chapter 5 projeCt: Leaving review FeedbaCk

137

 let today = dayjs().format('ddd, MMMM D YYYY [at] H:HH');

 let s = document.createElement('small');

 textnode = document.createTextNode(today);

 s.appendChild(textnode);

 review.appendChild(s);

 let hr = document.createElement('hr');

 review.appendChild(hr);

 transcript.textContent = ";

});

clearbtn.addEventListener('click', function() {

 transcript.textContent = ";

});

 9. we’re almost there. all that remains is to save our code, so go

ahead and do that now. once done, fire up your browser, and

then browse to https://speech/reviews/. if all is well, we

should see something akin to the screenshot in Figure 5-1.

Figure 5-1. Our finished review system

Chapter 5 projeCt: Leaving review FeedbaCk

138

At this point, we should now have a working demo, where we can talk

into a microphone and the Recognition Speech API transcribes it into

written content. Although it seems like we’ve written a fair chunk of code,

the basic principles are the same as the ones we first met back in Chapter 1,

and started to develop in Chapter 2. To see what I mean, let’s dive into the

code, to see how it all hangs together, in more detail.

 Breaking apart the code in detail
As I am sure someone once said, we must start somewhere – there is no

better place than the HTML markup that was preconfigured for our demo.

If we take a closer look, there shouldn’t be anything outrageously

complex; the demo uses standard HTML and CSS to construct our basic

form page. This aside, let’s take a quick look at what has been set up for us

in more detail.

 Exploring the HTML
The core part kicks off with an empty <div> for reviews, followed by the

unsupported div, which we use to advise if the browser doesn’t support

the API.

Next up, we set up the “Add Your Review” section – for this, we have

two radio buttons, #final and #interim. These control whether the API

renders transcribed code at the end or as we speak, respectively. We then

have our #transcript text area, which we’ve set to read-only; we start

adding content here once we’ve clicked the start button.

Once finished, clicking the start button will turn off the microphone.

We then have the customary submit button, which posts content into the

reviews div on screen. This is finished off by a call to the DayJS library – this

is used to format dates posted in each review. We will come back to this

shortly, when we dissect the script for this demo.

Chapter 5 projeCt: Leaving review FeedbaCk

139

 Exploring the JavaScript
In contrast, our JavaScript code is clearly more complex – this might put

you off, but fear not. It’s not anything we’ve not used before, at least within

the confines of the API! Let’s break down the code in more detail, to see

how it all fits together.

We kick off by declaring references to various elements in our markup,

before determining whether our browser can support the API, with a call

to window.SpeechRecognition. If this is rendered as null, we display a

suitably worded message; otherwise, we begin by initializing an instance of

the API as recognition. At the same time, we set the .continuous property

to true, to prevent the API from stopping listening after a period of time or

in the event of inactivity.

The first event handler we use (and arguably the most important)

is onresult – this takes care of transcribing our spoken content. It’s

important to revisit this one and, in particular, the use of event.

results[i][0].transcript.

We can see a screenshot of this function in Figure 5-2.

Figure 5-2. The onResult function from our demo

Once we’ve iterated through all of the results, any that contain

content are returned as an object of type SpeechRecognitionResultList;

this contains SpeechRecognitionResult objects, which can be accessed

like an array using getter properties.

Chapter 5 projeCt: Leaving review FeedbaCk

140

The first [0] returns the SpeechRecognitionResult at position 0 –

this is effectively the final answer, which should be rendered on screen.

However, if the speechRecognition.maxAlternatives property

had been set, we would see the alternatives which are stored within

SpeechRecognitionAlternative objects. In our case, the maxAlternatives

property has not been set, so what is displayed on screen will be the final

answer only.

The next event handler is a simple one in comparison – here we’re

intercepting onerror and rendering any error generated on screen, along

with the appropriate message.

this might range from something like no-speech to aborted –
you can see a complete list available on the Mozilla Mdn site at
https://developer.mozilla.org/en-US/docs/Web/API/
SpeechRecognitionError/error.

Moving on, we have the first of three event handlers that are used to

record, transcribe, and submit (or display) our feedback. The first, start,

is attached to the microphone button; we work out if we are already

speaking. If not, we then activate the microphone, before determining if we

should display interim results or the final article. We then run a try...catch

block, inside of which we run recognition .start() to start recording

our speech. When done, we stop the Speech Recognition API and flip the

styles back, ready to start recording again.

The second event handler, tied to submitbtn, allows us to submit

our content on screen into the feedback area. We first create a paragraph

dynamically using createElement('p'), before assigning it the contents

of transcript.value. We then calculate and format the date of recording

using the DayJS library – we could have of course used standard JavaScript,

but date manipulation can be awkward when using JavaScript!

Chapter 5 projeCt: Leaving review FeedbaCk

https://developer.mozilla.org/en-US/docs/Web/API/SpeechRecognitionError/error
https://developer.mozilla.org/en-US/docs/Web/API/SpeechRecognitionError/error

141

the dayjS library is available for download at https://github.
com/iamkun/dayjs, if you would like to learn more about this
library.

This, along with the contents of transcript, is then appended to the

review area in the DOM using review.appendChild(s), before we add a

dynamically generated horizontal rule element to separate it from the next

review feedback. In the third and final event handler, we use clearbtn to

trigger emptying the contents of the transcript text area, so it is ready for

the next comment to be recorded.

Now, it’s great that we have a working demo, but what about hosting

in a more realistic context, such as a product page? If we’ve planned our

demo correctly, it should be a matter of copying the code into the wider

template, and we shouldn’t have to alter the code too much. Let’s dive in

and see what happens…

 Adding it to a product page
For our next demo, we’re going to merge the reviews demo into a basic

product page for a nascent Raspberry Pi retailer – I’ve created a very

basic one which certainly won’t win any awards, but should suffice to see

our review panel working in a more practical context! Let’s dive in and

take a look.

Chapter 5 projeCt: Leaving review FeedbaCk

https://github.com/iamkun/dayjs
https://github.com/iamkun/dayjs

142

DEM0: MERGING THE REVIEW PANEL

before we get started, we need to open the source folders for both the reviews

demo and the product page demo in your text editor – copies of both are in the

merge folder that is in the code download that accompanies this book.

For the purposes of this demo, i will use the folder names
productpage and reviews, to distinguish between the original
source demos.

Make sure both folders are open in your text editor before continuing with

these steps:

 1. the first change we need to make is with the index.html file in

the reviews folder – look for this line: <div id="reviews">

 2. Copy from this line down to (and including) <div id="log">

Click the microphone to start speaking</div>.

then paste it below this line – <h1>Product Reviews</h1> –

in the index .html file, within the productpage folder.

 3. next, go ahead and remove this line from the productpage

folder’s index.html file:

<p>Insert reviews block here</p>

 4. our review panel uses the dayjS library to format the date of

posting the review – for this we need to transfer across the call

to the dayjS library. go ahead and add this line:

<script src="https://cdnjs.cloudflare.com/ajax/libs/

dayjs/1.8.16/dayjs.min.js"></script>

Chapter 5 projeCt: Leaving review FeedbaCk

143

above the call to the scripts file in the productpage folder:

<script src="js/scripts.js"></script>

 5. we now need to update the styling to allow for the added

review panel – for this, go ahead and copy all of the styles from

the review version of the styles.css file into the productpage

folder’s CSS file.

 6. we’re almost done. go ahead and copy the contents of the

scripts.js file from the reviews folder into the top of the

scripts.js file in the productpage folder.

 7. we need to copy across the mic.png image for our microphone

button – copy the img folder from the reviews folder into the

productpage folder.

 8. the final step is to remove these two lines:

<h1>Product Reviews</h1>

<p>Insert reviews block here</p>

 9. go ahead and save the file – we can now preview our results. For this,

browse to https://speech/productpage/. if all is well, we should

see something akin to the screenshot shown in Figure 5-3.

Chapter 5 projeCt: Leaving review FeedbaCk

144

Figure 5-3. The merged review panel

Chapter 5 projeCt: Leaving review FeedbaCk

145

Unfortunately, the screenshot doesn’t do it justice – to get a feel for

how it would work in action, I would recommend running the demo from

the code download that accompanies this book. It’s in the productpage

folder and ideally should be run as a secured URL. None of the code

should be unfamiliar; although the merged version will be a little rough

around the edges, it gives us a perfect opportunity to optimize code such

as the CSS styling!

Okay, let’s move on. We’ve constructed our review system; at this

point, we should have something that allows us to record feedback in

English and display it on screen in an appropriate manner. Trouble is, in

the modern age of the Internet, not everyone speaks English! It means that

our demo will only be really effective in English-speaking markets or where

customers can speak it as a second language.

Fortunately, this is easy to fix – we’ve already used some of the

principles of how, in the previous chapter! With this in mind, let’s dive

in and see what we need to do to allow our review system to accept and

transcribe more than just English…

 Adding language support
In this modern age where we should embrace different cultures, it’s

important to show support for customers whose first language isn’t

English. Yet adding support for extra languages can be something of a

double-edged sword – it may be very easy to add support technically, but

which languages should one choose to support?

The answer (in part) will depend on support from Google – it provides

support if customers are using Chrome. A list of countries supported by

Google (under the BCP47 protocol) is available at https://cloud.google.

com/speech-to-text/docs/languages. But this isn’t the end of it – there

are more questions we should ask, which include the following:

Chapter 5 projeCt: Leaving review FeedbaCk

https://cloud.google.com/speech-to-text/docs/languages
https://cloud.google.com/speech-to-text/docs/languages

146

• Which browsers are our customers using? This is

important as it depends a lot on which browser your

customers are using: if it is Chrome (or latest versions

of Edge), then support will be reasonably good –

Google offers a range of different languages as part of

this support. If however your customers prefer IE or

Safari, then providing language support will be a moot

point, as the API isn’t supported on either browser!

• How do we risk not alienating customers if we decide

not to offer support for a specific language? Clearly a

language only spoken by a handful of customers isn’t

one that will be added on the grounds of economic

viability; yet, what if that customer happens to be one

who is a substantial revenue earner for you? Is it a case

of “they who shout loudest get heard first”? Yes, I know

this is something of an extreme example, but it goes to

show that prioritization is key!

• Assuming we add in support for more languages, do

you have the resource available to support customers

who make use of the feature? After all, if they take

the trouble to leave feedback in their own language,

it somewhat destroys the whole purpose of having

this option if the only language we can respond in is

English. Yes, we could use a service such as Google

Translate, but this is a poor substitute for offering a

response from a real member of your team!

As we can see, simply adding in support technically is only part of the

puzzle; to solve it (and offer the best support for our customers), we must

consider the whole picture. We’ve touched on some of the questions we could

ask, so it’s time we got technical. Let’s dive in and consider the code we need

to add or adapt to allow our review system to cater for more languages.

Chapter 5 projeCt: Leaving review FeedbaCk

147

 Updating the demo
For our next demo, we’re going to add in support for customers who speak

French – we could add in any number of different languages, but French

happens to be the one I can speak! (Okay, it’s been a while since I’ve had to

speak it full-time, but I digress…)

There are a few changes we need to make to our demo – in summary,

these are as follows:

• We need to source appropriate flag icons – for our

demo, we’ll use the ones we had back in Chapter 3.

If however you would like to try different languages,

then a site such as https://www.gosquared.com/

resources/flag- icons/ will be a good place to start.

• We’ll need to add in markup and styling to host these

flags – bear in mind that if we were to add in more

than just French, we might have to consider relocating

elements, to make additional space, or altering styles so

they fit correctly.

• We need to alter the configuration options when we

use the Speech Recognition API, so that it is not hard-

coded to the default of US English, but can accept other

languages on request.

• We need to add in event handlers to allow customers

to select a language and update the API configuration

options accordingly.

This might seem a lot, but in reality, the changes are very easy to make.

To see what I mean, let’s dive in and make a start on updating our demo.

Chapter 5 projeCt: Leaving review FeedbaCk

https://www.gosquared.com/resources/flag-icons/
https://www.gosquared.com/resources/flag-icons/

148

ADDING LANGUAGE SUPPORT

the first change we need to make is to our markup:

 1. we’ll start by opening a copy of index.html and then looking

for this block:

<div class="button-wrapper">

 <div id="speechButton" class="start"></div>

</div>

 2. immediately below it, insert the following code for our flags:

<section class="flags">

 Choose language:

 < span class="en-us"><img src="img/en-us.png"

alt="en- us">EN|

 < span class="fr-fr"><img src="img/fr-fr.png"

alt="fr- fr">FR

</section>

 3. go ahead and save the file – we can close it, as it is not

needed. next, crack open scripts.js and then scroll down

to this line:

var unsupported = document.getElementById('unsupported');

 4. immediately below it, go ahead and add these variable

declarations – make sure to leave a line blank after the const

french... statement:

var speaking = false;

var chosenLang = 'en-us';

const english = document.querySelector("span.en-us");

const french = document.querySelector("span.fr-fr");

Chapter 5 projeCt: Leaving review FeedbaCk

149

 5. Scroll down a few lines. then below recognition.

continuous = true, go ahead and add this line:

recognition.lang = chosenLang;

 6. next, look for the clearbtn event handler – leave a blank

line below it and then add in this event handler, to take care of

setting english as our chosen language:

english.addEventListener("click", function() {

 recognition.lang = 'en-us';

 english.style.fontWeight = 'bold';

 french.style.fontWeight = 'normal';

});

 7. we have one more event handler to add in – this one takes care

of setting French, when selected:

french.addEventListener("click", function() {

 recognition.lang = 'fr-fr';

english.style.fontWeight = 'normal';

french.style.fontWeight = 'bold';

});

 8. go ahead and save the file – it is no longer needed, so can be

closed at this point. once closed, crack open styles.css, and

add the following rules at the bottom of the stylesheet:

/* CSS Changes */

span.intro {

padding-right: 10px;

vertical-align: baseline;

}

/* flags */

section > span.en-us,

section > span.fr-fr {

padding: 2px 5px 0 0;

}

Chapter 5 projeCt: Leaving review FeedbaCk

150

section > span.en-us > img,

section > span.fr-fr > img {

vertical-align: middle;

padding: 3px;

}

section > span.en-us > img:hover,

section > span.fr-fr > img:hover {

cursor: pointer;

}

 9. Save this file, and close it. at this point, we can now test the

results! For this, browse to https://speech/reviewslang,

then click ask a question, and start to enter information as

shown in the extract in Figure 5-4.

Figure 5-4. Our updated demo, with French as an option

Chapter 5 projeCt: Leaving review FeedbaCk

151

See how easy it was to adapt our demo to allow us to speak French?

The great thing about this is that the SpeechRecognition API supports a

host of different languages, so we can drop in support for more languages

very easily.

It’s important to note though that we’ve hard-coded a lot of what is

needed in this demo; if we were to add in more languages, it would be worth

optimizing our code, so we can reuse existing styles more effectively. This said,

there were a couple of important changes made to support extra languages

in this demo, so let’s take a moment to go through the code in more detail.

 Dissecting the code
Over the course of the last couple of pages, we made several changes to

our code. The first was to add in appropriate markup as scaffolding for our

chosen flags (in this case, both US English and French). We then switched

to the scripts.js file and added in some variables – two to help with

configuring the API (speaking and chosenLang) and two as references to

elements in the DOM: english and french.

Next up, we had to alter the default language for our instance of the

API – as we can’t now use the default of 'us-en' (or US English), we need

to tell it which language should be used. For this, we assigned the value of

chosenLang to recognition.lang; this was set to 'en-us' as default (so

maintaining the status quo). However, this will now be updateable through

the use of the next two event handlers, for english and french. Here we

set the recognition.lang to 'en-us' or 'fr-fr', depending on which flag

is clicked; we also set the EN or FR text on screen to bold and deselect the

other flag’s text.

We then rounded out the demo with some simple styling changes,

to allow for the presence of the flags. These fitted perfectly under the

transcript textarea element, but if we were to add in more, then we might

want to consider the wider implications to the UI and move some of the

other elements around for a better fit.

Chapter 5 projeCt: Leaving review FeedbaCk

152

Okay, let’s change tack. Over the course of this chapter, we’ve made

use of the Speech Recognition to implement the beginnings of a useful

feedback mechanism, which could be adapted for use on any web site

wanting to offer customers a chance to leave comments. This is a great way

to get comments that we can use to help improve our offer, but it can come

with a few gotchas that we need to consider. Let’s just say they could come

back to bite us if we’re not careful! To see what I mean, let’s take a look at

the wider picture in more detail.

 Leaving reviews: A postscript
As with any new technology, there frequently come some downsides –

after all, this is still relatively new technology, and there are bound to be

changes before the standard is finalized! This said, there are three points of

note, to which we should pay special attention:

• One of the first things we need to consider is how

customers might react, particularly if they’ve had a poor

experience! As part of any UX design, we should consider

implementing some house rules. What if customers used

profanities in their comments, for example? They might

feel justified in expressing their opinions if they’ve had

less than a perfect experience, but we clearly don’t want

our review comments littered with unsavory words!

• A second issue to consider is one of spamming – yes, it

might seem a little odd, but with the advent of technology,

there is technically nothing to stop people from

spamming your feedback mechanism! Whether this does

become a reality, only time will tell, but it is nevertheless

something to think about when implementing a voice-

activated review system for your web site.

Chapter 5 projeCt: Leaving review FeedbaCk

153

• The reliance on Google to support functionality for

some browsers will be a concern – not because Google is

likely to go out of business any time soon, but the simple

fact that they may want to begin monetizing support

that is currently offered for free. It does mean that we

are somewhat at the mercy of Google when it comes to

support; there may come a time when a language might

not be supported, so we will have to react quickly to

minimize any issues if support is removed.

In short, there may not be much we can do about these points, but we

can build in some protection. For example, we might ask that users must

log in to leave a review or build in something to monitor for instances

of particular words that we could try to filter out when transcribing our

content.

Also, that support? Well, we hardcoded our entries to prove our demo

works, but this isn’t very efficient. Instead, we could make our code more

dynamic – it can do a search for any entries present in a configuration

file. Based on what it finds, it iterates through them and builds up the

content automatically. It means that as long as media such as flags are

present, all we need to do is turn support on or off; our code will work out

automatically which languages to support and add the appropriate entries

to our web page.

Okay, we’re almost at the end of this chapter, but there is one more

thing to consider – what about developing our solution further? Of course,

this is all dependent on both your requirements and how creative your

imagination is; to get you started, let’s take a look at a few ideas on how

you can add to your solution to help develop the experience for your

customers.

Chapter 5 projeCt: Leaving review FeedbaCk

154

 Taking things further
Okay, we’ve built a basic demo, which allows us to talk in either English or

French and for it to transcribe and post our comments in written form. The

question is “Where next?” Well, there are a few things we could do. Let’s

take a look:

• One element that is clearly missing from our demo is a

rating – this is a good opportunity to allow customers

to provide an objective figure, in addition to qualitative

feedback. We could simply implement a suitable

mechanism, such as the RateIt plugin from https://

github.com/gjunge/rateit.js, but what about doing

this verbally? How we achieve this will depend on the

structure used, but it should be possible to provide the

rating verbally and for it to be translated into the

appropriate star rating. As an example, adding a rating

could look like the example screenshot shown

in Figure 5-5.

Figure 5-5. Our mocked-up rating stars

• Our demo allows us to post reviews on a page, but this

is only part of the story – we should absolutely look

at using that feedback and potentially responding to

the customer if this is appropriate. The latter though

Chapter 5 projeCt: Leaving review FeedbaCk

https://github.com/gjunge/rateit.js
https://github.com/gjunge/rateit.js

155

means we would need at least one method of getting

in contact with them, such as an email address. How

could we achieve this? One method might be to

encourage customers to register for an account, so we

can get that email address – this will of course have

implications for privacy legislation such as GDPR,

which we will need to consider.

• If resourcing to support management of feedback from

customers is an issue, then we could consider using

an API such as Google Translate to at least convert our

transcribed content into English or our native tongue

(if it isn’t English). This does come with a cost – we can only

hope to get a sense of what Google Translate provides as

machine-translated content won’t be perfect!

These are just a few ideas to get you started – we could even look at

adding extras such as avatars, if the type of site we operate is suitable for

such an extra! It goes without saying though that if we do add in extra

options, then these need to be tested thoroughly, to be sure that they offer

value and don’t appear as a gimmick to our customers.

 Summary
Customer feedback is essential for any business, no matter how small or

large the operation – ultimately the success of our business will depend

on the comments received and how we respond or the action we take to

improve ourselves. Clearly it’s important to make the process of giving

feedback as easy as possible – what better way than to leave verbal

comments? We’ve covered the basic steps to achieve this over the course

of this chapter; let’s take a moment to review what we have learned in

more detail.

Chapter 5 projeCt: Leaving review FeedbaCk

156

We kicked off by introducing the theme for this chapter, before quickly

setting the scene and determining both how we will scope and build our

demo. We then moved onto constructing the form, before exploring how

the code worked in detail while making note of similarities from earlier

chapters.

We then took a look at how we could incorporate this into a more real-

world example, before delving into the subject of language support – we

covered the steps required to alter our demo, before exploring some final

points about the downsides of providing verbal feedback and where we

can develop our project to introduce new features for our customers.

Okay, we’re not stopping here; it’s time to move on to our next

chapter! Hands up how many of you own a smart assistant such as Google

Assistant, Siri, or Amazon Alexa? Bill Gates, one of the co-founders of

Microsoft, once said that voice and speech will become a standard part of

the web interface – with the advent of Siri, Alexa, and Google Assistant, he

was not wrong! We already have many of the techniques in place to build a

simple version of Alexa for a web site. Intrigued on how? Stay with me, and

I will reveal all and more in the next chapter.

Chapter 5 projeCt: Leaving review FeedbaCk

157© Alex Libby 2020
A. Libby, Introducing the HTML5 Web Speech API,
https://doi.org/10.1007/978-1-4842-5735-7_6

CHAPTER 6

Project: Building Alexa
“Alexa, what time is it…?”

For some of you, I’ll bet that is an all too common a phrase in your

household – I suspect it’s a case of not if, but how many!

Over the last few years, the growth of smart assistants (or SAs) such as

Amazon Alexa or Google Assistant has exploded; gone are the days when

we had to trawl web sites or search through newspapers or books to get

that scrap of information. Indeed, one of the co-founders of Microsoft, Bill

Gates, once said that he believed voice and speech output will become a

standard part of the [web] interface – with the advent of Siri, Alexa, and

Google Assistant, he was not wrong!

This got me thinking – we’ve already been introduced to the two

core technologies that lie at the heart of smart assistants, namely, speech

synthesis and recognition. Could we build something that mimics how

assistants such as Alexa work? It may not be as powerful as the hardware

equivalent is, but it could use both APIs to create something useful. As long

as we make it modular, then we can add features, to help develop it into

something more worthwhile in the future.

With that in mind, and over the course of this chapter, we’ll make use

of the Speech Recognition and Synthesis APIs to create a simple Alexa-

style voice assistant; we’ll learn how to make it modular, so that it’s easy to

add further skills to help expand its capabilities.

158

 Setting the scene
Our next project is going to be a simpler one – it’s an opportunity to relax a

little, as I know what’s coming up later in the book is going to be intensive!

Let me introduce you to Rachel – she will be able to tell the time in your

local area, in New York (more on that later), get the weather, and more.

We’ll start with some simple tasks to illustrate how easy it is to add features

in. Let’s begin by taking a look at how we will architect our demo in more detail.

 Architecting our demo
We’ve already been introduced to the two APIs that feature at the core of

this project; by now, they should start to look a little familiar. However, for

this project, we’re going to add a little twist.

Instead of hard-coding both the Speech Recognition and Synthesis APIs by

hand, we’re going to make use of a library to do some of the work for us. This will

be one of a handful that we’ll make use of, so let’s take a look at the list in full:

• Annyang – this library is a wrapper around the Speech

Recognition API that we’ve used thus far in this book; it’s

available from https://www.talater.com/annyang/.

• SpeechKITT – this is a GUI that works in tandem

with annyang and can be downloaded from

https://github.com/TalAter/SpeechKITT. The GUI

library is a couple of years old, but offers native support

for annyang and still works perfectly fine for our needs.

Just in case you’re wondering about the reference to KITT in the GUI
library, the library was named after the ’80s US show Knight Rider.
You can even see a picture of the lead actor, David Hasselhoff, on the
GitHub page for SpeechKITT!

CHapTer 6 proJeCT: BUIlDInG alexa

https://www.talater.com/annyang/
https://github.com/TalAter/SpeechKITT

159

• Luxon – used for dates and times, along with time

zone support; this is available from https://moment.

github.io/luxon/index.html.

• OpenWeatherMap – one of the requests we make relates

to getting the weather; for this, we will make use of the

API available from https://openweathermap.org/.

• Pixabay – if you happen to own a smart assistant

already, this is something you might not expect to see

in a demo like this; after all, smart assistants can’t show

pictures unless you happen to configure your smart

assistant to use your PC as the display mechanism!

We’ve included it here to explore how we might use a

service such as Pixabay to display images; we will talk

more about whether this is the right approach later in

the chapter.

• jQuery – this is a necessary evil. We’re making use of

it to work around a limitation with the SpeechKITT

GUI. We’ll explore more on why later in the chapter.

In addition, I would recommend having the JSon editor online web
page (https://jsoneditoronline.org/) open in your browser;
it’s a great JSon editor and will be useful for browsing the raw data
returned from some of the services we use.

Our demo will showcase a handful of straightforward requests; we can

use this as a basis for adding in more features that use different APIs. It’s

something we’ll explore later in this chapter, but for now, let’s crack on

with coding our demo.

CHapTer 6 proJeCT: BUIlDInG alexa

https://moment.github.io/luxon/index.html
https://moment.github.io/luxon/index.html
https://openweathermap.org/
https://jsoneditoronline.org/

160

 Building our demo
In terms of coding our demo, it will seem like a walk in the park, compared to

previous projects! Our demo will be very simple in terms of structure – outside

of some markup and styling needed for presentation, there will only be one

element added. This will be done dynamically and will be used to trigger all of

the requests we make.

Let’s crack on and get the markup set up, before we take a look at how

the code that we write will bring our demo to life.

 Creating the markup
Our first task is to set up the markup for this little demo – this one is

very straightforward. We don’t even need to provide a placeholder for

our microphone trigger, as this will be created dynamically for us by the

SpeechKITT GUI. Let’s dive in and take a look at the code in more detail,

beginning with our markup.

SETTING UP THE MARKUP

To set up the markup, go ahead with these steps:

 1. We’ll begin by creating a new folder for our project – save it as

rachel at the root of our project area.

 2. next, go ahead and create a new file for our base markup; add

in the following code:

<!DOCTYPE html>

<html>

<head>

 <title>Introducing HTML5 Speech API: Building an Alexa

Clone</title>

CHapTer 6 proJeCT: BUIlDInG alexa

161

 <link href="https://fonts.googleapis.com/

css?family=Open+Sans

&display=swap" rel="stylesheet">

</head>

<body>

 <div id="page-wrapper">

 <h2>Introducing HTML5 Speech API: Building an Alexa-

style Smart Assistant</h2>

 <section>

 Rachel's voice: <select name="voice" id="voice">

</select>

 </section>

 </div>

 <script src="js/annyang.min.js"></script>

 <script src="js/speechkitt.min.js"></script>

 <script src="js/jquery.min.js"></script>

 <script src="js/luxon.min.js"></script>

 <script src="js/scripts.js"></script>

</body>

</html>

 3. Save the file as index.html – we can close it for now. The

next exercise will take care of adding the script functionality.

 4. We have one last step to do – we need to copy across some

JavaScript files and CSS styling from the code download that

accompanies this book. Go ahead and extract copies of the

following files, and put them into subfolders under our rachel

folder that we created earlier:

• styles.css – into a new css subfolder

• The following into a new js subfolder: annyang.js,

jquery.min.js, luxon.min.js, and speechkitt.

min.js

CHapTer 6 proJeCT: BUIlDInG alexa

162

 5. at this point you can close any open files. leave yourself a

blank file open, ready to make a start on the next exercise

which will be along shortly.

We now have our markup in place – there is nothing complex or

unusual about the code. We’ve simply set up our basic framework and

included a handful of JavaScript and CSS files; the magic will come when

we start to develop the script that brings our demo to life.

 Making our demo come to life
Before we get started on adding our JavaScript code, there is one

small task we need to do – sign up for a free account at https://home.

openweathermap.org/users/sign_up.

This will take a couple of hours to be activated by the team at

OpenWeather; you can assume it is set up once you get a welcome email

with the key from the OpenWeather team. You may want to factor this in

before you get stuck into developing the code! Assuming you’ve signed up

and had email confirmation to say that your account is now active, let’s

make a start on our demo.

DEMO: ADDING FUNCTIONALITY

To set up our demo, follow through these steps:

 1. First, we need to create a new file for our script – for this, go

ahead and create scripts.js in the js subfolder under the

rachel folder we created in the previous exercise.

 2. We can now begin to add code. There is a lot to cover, which

we will do block by block. The first block takes care of loading

rachel’s voice – add the following code in at the top of the

scripts.js file:

CHapTer 6 proJeCT: BUIlDInG alexa

https://home.openweathermap.org/users/sign_up
https://home.openweathermap.org/users/sign_up

163

const voiceSelect = document.getElementById('voice');

function loadVoices() {

 var voices = window.speechSynthesis.getVoices();

 voices.forEach(function(voice, i) {

 var option = document.createElement('option');

 option.value = voice.name;

 option.innerHTML = voice.name;

 voiceSelect.appendChild(option);

 });

}

loadVoices();

// Chrome loads voices asynchronously.

window.speechSynthesis.onvoiceschanged = function(e) {

 loadVoices();

};

 3. With rachel’s voice loaded, we can now get her to talk and flag

if any errors crop up. leave a line blank after the previous step,

and then add in this function to manage basic error handling:

window.speechSynthesis.onerror = function(event) {

 console.log('Speech recognition error detected:

' + event.error);

 console.log('Additional information: ' + event.message);

};

 4. This next function makes rachel talk – go ahead and add the

following code in after the previous function, leaving a blank

line in between:

CHapTer 6 proJeCT: BUIlDInG alexa

164

function speak(text) {

 var msg = new SpeechSynthesisUtterance();

 msg.text = text;

 if (voiceSelect.value) {

 msg.voice = speechSynthesis.getVoices().

filter(function(voice) {

 return voice.name == voiceSelect.value;

 })[0];

 }

 speechSynthesis.speak(msg);

}

 5. We come to the interesting part – now that rachel can talk, it’s

time she said something! The first example will be to articulate

the current time:

// Rachel, what time is it now?

var timeNow = function() {

 var localtime = luxon.DateTime.local().

toLocaleString(luxon.DateTime.TIME_SIMPLE);

 speak("The time is " + localtime);

}

The time mentioned will be local to wherever you live in the world.

 6. This next task is to articulate the time in a different location – I

chose new York, which happens to be the home of apress

publishing. Go ahead and drop the following code in after the

previous step, leaving an empty line in between:

// Rachel, what time is it in New York?

var timeinnewyork = function() {

CHapTer 6 proJeCT: BUIlDInG alexa

165

 var NYTime = luxon.DateTime.local().setZone('America/

New_York').toLocaleString(luxon.DateTime.TIME_WITH_

LONG_OFFSET);

 speak("The time in New York is " + NYTime);

}

 7. We’ve covered the time in two different locations, but what

about the date? no problem, here’s the code:

// Rachel, what is today's date?

var DateNow = function() {

 var localdate = luxon.DateTime.local().

toLocaleString(luxon.DateTime.DATE_SIMPLE);

 speak("The date is " + localdate);

}

 8. I love a good joke, so it only seems sensible to see if we can

include a couple in this demo; if you own a real alexa, then I’m

sure you will have seen emails suggesting you ask it for a joke

too! Here’s the first:

// Rachel tell a funny joke:

var telljoke = function() {

 speak("Why do we tell actors to break a leg? Because

every play has a cast");

}

 9. This next joke will seem a little more fitting for us designers and

developers, at least from the use of font types; go ahead and

add in this code after the code from the previous step, leaving a

blank line in between:

CHapTer 6 proJeCT: BUIlDInG alexa

166

var tellsecondjoke = function() {

 speak('Helvetica and Times New Roman walk into a bar.

The bar tender shouts "Get Out of here - we don\'t

serve your type!"');

}

 10. another obvious thing to ask rachel would be the weather – for

the purposes of this demo, I’ve hard-coded it to be one of my

favorite holiday destinations, or the city of Copenhagen. For this,

go ahead and add a blank line after the code from step 9 and

then drop in this code:

You will need to replace <InSerT YoUr app ID Here> with the apI key from

openWeather, as per the beginning of this exercise.

// Rachel, what is the weather in Copenhagen?

var weather = function() {

 var yourappid = "<INSERT YOUR APP KEY HERE>";

 $.ajax({

 method:'GET',

 crossDomain: true,

 url: 'https://api.openweathermap.org/data/2.5/weather

?q=copenhagen,dk&appid=' + yourappid,

 dataType: "json",

 async: true,

 success: function(response){

 speak("The temperature in Copenhagen is currently:

" + parseInt(response.main.temp - 273.15) + "

degrees");

 }

 });

}

CHapTer 6 proJeCT: BUIlDInG alexa

167

 11. This next function takes care of getting some example data

from Wikipedia – as it so happens, I had an email from amazon

suggesting this very topic, for my alexa! leave a blank line

under the previous function and then add in this code – note

that the url value should be on one line and not spread over two

as shown in the following:

// Rachel, Wikipedia "artificial intelligence"

var wikipedia = function() {

 $.ajax({

 method:'GET',

 crossDomain: true,

 url: 'https://en.wikipedia.org/api/rest_v1/page/summary

 /Artificial_intelligence',

 dataType: "json",

 async: true,

 success: function(response){

 speak("Here is the extract from Wikipedia on

artificial intelligence: " + response.extract);

 }

 });

}

 12. For this last option, we’re going to come back to this one later in

the chapter – add it in for now, and all will become clear soon:

// Rachel, show me a picture of...

var flickr = function() { console.log("This to follow"); }

 13. We’re almost at the end of this exercise. This last part takes

care of initializing annyang and SpeechKITT. leave a blank line

as before, and then drop in this code:

CHapTer 6 proJeCT: BUIlDInG alexa

168

if (annyang) {

 var commands = {

 'Rachel what time is it': timeNow,

 'Rachel tell a joke': telljoke,

 'Rachel tell another joke': tellsecondjoke,

 'Rachel what time is it in New York': timeinnewyork,

 'Rachel what is the weather like in Copenhagen': weather,

 'Rachel wikipedia artificial intelligence': wikipedia,

 'Rachel show me a picture of some orchids': flickr

 }

 // Add our commands to annyang, then tell KITT to use

annyang:

 annyang.addCommands(commands);

 SpeechKITT.annyang();

 // Define a stylesheet for KITT to use

 SpeechKITT.setStylesheet('css/styles.css');

 // Render KITT's interface

 SpeechKITT.vroom();

}

$(document).ready(function() {

 $("#skitt-ui").insertAfter($("h2"));

});

 14. Go ahead and save the file – we can now preview the results

of our work! Browse to https://speech/rachel/ in your

browser; if all is well, we should see something akin to the

screenshot shown in Figure 6-1.

CHapTer 6 proJeCT: BUIlDInG alexa

169

At this stage, we now have a functioning demo – Rachel has come to life

and is able to respond to some simple requests. Although the code we’ve

used isn’t particularly complex and should by now be relatively familiar, our

demo highlights some key points we should consider more closely. Before

we do so, let’s dive in and take a look at the code in more detail.

 Breaking apart the code
In comparison to some of the demos from earlier in this book (and those yet

to come), this one will seem like a walk in the park! We’ve been able to reuse

some of the code from earlier projects, namely, the Speech Synthesis API;

the rest is from the annyang library that we introduced earlier in this chapter.

The main focus of this code sits in the scripts.js file – here, we kicked

off by caching a reference to the voice drop-down used in our markup,

before calling the loadVoices() function to load in the voices from

Google into this drop-down element. As before, we’ve also included the

onvoiceschanged function – some earlier versions of Chrome loaded

voices asynchronously, which can only be done using this method. (It

will be less of an issue now with more recent versions of Chrome, so this

function has been included for compatibility.)

Figure 6-1. Our finished result – meet “Rachel” in all her glory…

CHapTer 6 proJeCT: BUIlDInG alexa

170

Next up, we implemented some basic error checking using the onerror

event handler – this renders the details of any error into the console area,

using the error code and the message property. We then defined the

speak() function, which is identical to previous exercises; here we set a

new instance of SpeechSynthesisUtterance(), assigned it the text passed

into the function, and set the voice to use, before calling .speak() to

articulate the text.

At this point, we then had a set of functions. Let’s skip down to the

initialization function for annyang, which begins with this line of code: if

(annyang) {. It’s here that we set up the instance to annyang and told it to

use the SpeechKITT GUI and our specified styles.css stylesheet.

It’s worth noting that SpeechKITT uses the .vroom() method to start
up; this is a reference to the inspiration for this GUI and can easily be
replaced with render(), which does the same thing.

We now have a basic configuration in place – if we revert back to

around line 40 (var timeNow = function() {), we can see the first of

several simple functions that will be called each time annyang recognizes

when a request has been made, such as this one (Figure 6-2).

Figure 6-2. The first function to be called by annyang

CHapTer 6 proJeCT: BUIlDInG alexa

171

If I had said “Rachel, what time is it?”, annyang would call this

timeNow() function and display the response, which will be the local time

for where you live. The function calls are defined in the var commands =

{...} object toward the end of the script – these will be executed as and

when annyang determines that one matches the response from our user.

Okay, let’s move on. I would say that this is the end of the explanation,

but if only! In truth, the project has revealed a number of issues and areas

for further exploration; let’s begin with the first which is something of

a styling challenge. If you had run annyang’s example demo (shown at

https://github.com/TalAter/SpeechKITT as a separate demo), you

would have noticed that the trigger sits at the bottom of the screen, which

doesn’t always fit what people need! It’s due to a configuration issue

(or limitation – depending on your view). Let’s dive in and I will explain all.

 Solving a styling problem
In our project, I am sure that you will have noticed the small usage of jQuery at

the bottom of the script file and that earlier I alluded to this being a “necessary

evil” – there is good reason for this, so let me explain what I mean.

If we had run our demo using the original CSS styling provided from

the SpeechKITT web site, you would have found that the microphone

trigger sits at the bottom-left corner of our screen.

No amount of moving it using CSS on its own will help – this particular

element is generated dynamically, so for it to be properly moved, we need

to use JavaScript or jQuery! As a matter of convenience, I’ve used jQuery

in this instance do this job; this keeps it very neat and tidy, although this

is at the expense of importing a large library. Whether this works for you

is a different matter though. This will depend on if you happen to be

using jQuery already. If not, then pure JavaScript would be preferable,

although the code to do this isn’t quite so concise! We can see the source

of our problem illustrated in Figure 6-3, where the microphone element is

highlighted in our console.

CHapTer 6 proJeCT: BUIlDInG alexa

https://github.com/TalAter/SpeechKITT

172

However, doing a simple element move isn’t the end of it – there are a

couple of other changes we had to make, in order for us to style our demo

as we wanted to do. The other changes we made are all CSS-related. In no

particular order, they are

• We dropped the two media queries from the original

demo – these were getting in the way and affected the

specific format used for styling our demo. I am sure

that media queries would be useful, but the ones from

the original demo don’t fit this particular example, so

would need to be revised anyway!

• We then removed this rule – the reason for this is a little

more complex:

#skitt-ui { display: block !important; }

I’m not a fan of using the !important directive, as it frequently gets used

and abused for the wrong reasons! I was keen to remove at least one of

them if I could – the one against #skitt-ui was the more likely candidate.

Figure 6-3. The microphone trigger from the original SpeechKITT
demo

CHapTer 6 proJeCT: BUIlDInG alexa

173

There was one more block where we needed to make changes – in the

#skitt-ui rule, the following entries (highlighted) were removed:

#skitt-ui {

 height: 50px;

 display: inline-block;

 background-color: #2980B9;

 z-index: 200;

 border-radius: 25px;

 outline: none;

 position: fixed;

 bottom: 20px;

 left: 20px;

 border: none;

 box-shadow: rgba(0,0,0,0.2) 0px 4px 8px;

 cursor: default;

 font-family: Lato, Helvetica, Arial, sans-serif;

 font-size: 16px

}

Making these changes meant that we could effectively reposition

our microphone trigger anywhere on screen and not worry about its

positioning!

Okay, let’s change tack. Up until now, we’ve explored how to add in a

number of verbal examples, where we can articulate the response back to

our user verbally, such as the current time or weather.

We do though have a choice to make: what about visual content? Yes,

it’s not something you might expect with a standard Alexa (although not

impossible), but as we’re working in a browser, we can consider whether

we want to display content on screen. This is something we’ll make use

of more in the next project, but for now, how about displaying something

simple, from say a site such as Flickr or Pixabay.com?

CHapTer 6 proJeCT: BUIlDInG alexa

174

 Adding new features
Now that Rachel is set up and operational, we can add in all manner

of different features. The only limiting factors are our imagination and

whether we can make it work for us.

This does raise a good question though: what kind of features should

we add? In most cases, one could argue that they should be verbal only – it

does depend on how close we want to mimic a real smart assistant (and no, I

don’t mean one of a human kind, either!) On the other hand, it’s possible to

say that this doesn’t apply, as you can create all manner of skills that are not

all verbally based. Choices, choices…

That aside, and for our next exercise, we’re going to take a little poetic

license and assume that we can make use of our PC’s screen as well as

accept verbal input. We’re going to display a random image from a picture

library; this will be of orchids (this happens to be my favorite flower, but you

can use any category, such as cars, camera, people, and etc.). Rachel will pull

back a list of images from the picture library site and display one at random

on screen. Let’s take a look at the changes we need to make in more detail.

ADDING AN IMAGE

To add in a picture option, go ahead with these steps:

 1. We’ll start by editing our script.js file – we already have a

placeholder function for this, so go ahead and look for this line

of code:

console.log("This to follow");

 2. remove the comment, and then drop in this code:

// Rachel, show me a picture of some orchids

var pixabay = function() {

CHapTer 6 proJeCT: BUIlDInG alexa

175

 var API_KEY = '<INSERT APP ID HERE>’;

 var URL = "https://pixabay.com/api/?key=" + API_KEY +

"&q=" + encodeURIComponent('orchids');

 $.getJSON(URL, function(data){

 function getRandomInt(max) {

 return Math.floor(Math.random() * Math.floor(max));

 }

 if (parseInt(data.totalHits) > 0) {

 var randomImg = getRandomInt(20);

 console.log(randomImg);

 $("<div class='imgPreview'><img src=" + data.

hits[randomImg].largeImageURL +"></div>").

insertAfter($("#skitt-ui"));

 } else {

 console.log('No hits');

 }

 });

};

 3. Save the file – we don’t need it to remain open, so you can close it.

 4. next, switch to the styles.css file, and scroll all the way to

the bottom.

 5. Go ahead and drop in this code, and then save the file:

/* Additions to allow for image */

. imgPreview { margin-left: auto; margin-right: auto;

display: block; width: 300px; margin-top: 20px; }

.imgPreview img { width: 300px; }

CHapTer 6 proJeCT: BUIlDInG alexa

176

 6. We can now preview the results of our change – for this, browse to

https://speech/rachel, and then click the white microphone.

articulate “rachel, show me a picture of some orchids” into your

microphone. If all is well, we should see a random image appear,

similar to the screenshot shown in Figure 6-4.

Figure 6-4. Displaying a picture from Pixabay as an added feature

A nice, easy change to make. Granted not all changes could be this

simple, but with a little creativity, I’m sure we can find more that could be

added in a similar manner!

This said, it does highlight a couple of useful points about the modular

nature of this code and how easy it is to add in new features. Keeping this

in mind, let’s revisit this code in more detail, to see how we effected this

change to our demo.

CHapTer 6 proJeCT: BUIlDInG alexa

177

 Exploring the code in detail
For this demo to work, I needed to choose a picture library with a useable

API – I did consider Flickr, but their current API didn’t make it very easy to

add into our demo! I chose Pixabay instead, as theirs is simpler; they may

not have quite as many images or be as well known as Flickr, but that isn’t

critical for the purposes of this demo.

The first change we made when we set up Rachel at the start of this

chapter; this was to add in the command to execute the function that

returns our image:

var commands = {

 ...

 'Rachel show me a picture of some orchids': pixabay

};

To allow the code to continue working at that time, we put a

placeholder function in that rendered a message to the console. However,

in this exercise, we replaced that console log message with a URL that

would form the basis for our request to Pixabay – the category being

encoded, to allow for the use of quotes in the URL.

We then used an AJAX call to get the list of images – it could return

any number of URLs, but as long as it returned at least one, we then

chose a random number between 1 and 20 and used this to display the

largeImageURL property from the returned JSON object. This was then

used to create an empty div element on screen, inside which we rendered

our chosen image.

Okay, let’s move on. So far, our demo has been operating in US English.

This is perfectly okay, but not everyone speaks English; what about including

support for other languages? Thankfully this is relatively easy to do – it does

mean making some changes, so let’s dive in and take a closer look.

CHapTer 6 proJeCT: BUIlDInG alexa

178

 Adding support for different languages
When working with the Speech Recognition or Synthesis API, we’ve

already seen in some of our earlier projects that adding in language

support is relatively straightforward. Yes, there may be a few changes to

make, but nothing too onerous. The same applies to the annyang library

we’ve used in this chapter.

For our next demo, I’m going to get Rachel to start speaking French

(primarily because that’s the language I can speak, so I can check it

works) – if you prefer to use a different language, please feel free to update

the text accordingly.

ADDING SUPPORT FOR LANGUAGES

We have a few changes to make, so let’s get started:

 1. First, take a copy of the now completed rachel folder, and

save it as rachel-language at the root of our project area.

 2. The first change we need to make is to replace the

speak(text) function – for this, go ahead and replace the

existing version with this code:

function speak(text) {

 var msg = new SpeechSynthesisUtterance();

 msg.text = text;

 msg.lang = 'fr-fr';

 speechSynthesis.speak(msg);

}

 3. next, scroll down a little until you see the timenow function –

replace the speak... line with this:

speak("Le temps est maintenant " + localtime);

CHapTer 6 proJeCT: BUIlDInG alexa

179

 4. We need to do something similar for the timeinnewyork

function – go ahead and replace the speak... line with this:

speak("TLe temps à New York est maintenant " + NYTime);

 5. The dateNow function also needs to be updated – for this,

replace the speak... line with this line of code:

speak("Le date aujourd'hui est " + localdate);

We’ll skip past the two joke functions for now – I will explain more at the end of

this exercise.

 6. next up is the weather() function – for this, replace the

speak... line as indicated:

 speak("La température à Copenhague est maintenant :

" + parseInt(response.main.temp - 273.15) + " degrees");

 7. We need to something similar with the wikipedia()

function – go ahead and alter it as shown:

success: function(response){

 speak("Voici l'extrait de Wikipedia sur l'intelligence

artificielle: " + response.extract);

}

 8. The final change is to alter the name given in the var

commands ={…} block – for this, we will use Hélène, as this

is more French. Change each instance of the word rachel with

Hélène, so you have this:

 var commands = {

 'Hélène quelle heure est-il': timeNow,

'Hélène raconte une blague': telljoke,

'Hélène raconte une autre blague': tellsecondjoke,

CHapTer 6 proJeCT: BUIlDInG alexa

180

'Hélène quelle heure est-il à New York': timeinnewyork,

'Hélène quel temps fait-il à Copenhague': weather,

'Hélène wikipedia intelligence artificielle': wikipedia,

'Hélène montre-moi une photo d\'orchidées': flickr

 }

 9. We’re almost done. The last two things we need to check or

change are the language and making sure we have localized

the annyang library. Scroll to the bottom of the scripts.js

library, and look for this line:

// Add our commands to annyang

annyang.addCommands(commands);

 10. Go ahead and add in this .setLanguage command,

immediately below that line:

annyang.setLanguage('fr-FR');

 11. The last change is to localize our speechKITT library – for this,

close the scripts.js (as we’re done with that for now), and open

speechKITT

.min.js.

 12. Find this line: u="What can I help you with?" replace it

as indicated:

u="Qu\'est-ce que je peux vous aider?"

You can see a screenshot of how it should look in Figure 6- 5.

Figure 6-5. Updating the speechKITT.min.js file...

CHapTer 6 proJeCT: BUIlDInG alexa

181

I would recommend doing a search and replace – it will be much easier!

 13. okay, go ahead and save and then close that file; we can now

preview the results. Fire up your browser, and then browse to

https://speech/rachel-language. If all is well, we should

see the screenshot shown in Figure 6-6, where the microphone

symbol has already been clicked, ready for speaking.

Figure 6-6. Our updated French-language version of “Rachel”

At this point, we now have a demo. Let’s try running the Pixabay

command to see how Rachel responds. By rights, we should get a random

image of some orchids back, surely…? There’s nothing wrong with that

assumption; it’s perfectly valid, only except this time, we get back the

square root of absolutely…nothing. What gives?

CHapTer 6 proJeCT: BUIlDInG alexa

182

 Breaking down the code
There is a very good reason for our demo appearing not to work – it might

seem a little crazy, but there isn’t actually anything wrong with our code

as such! Yes, I know it seems a little weird, but trust me on this: the code is

syntactically valid. Before I reveal the root cause, let’s quickly cover off the

changes we made to localize our demo.

Our demo had four distinct areas where changes were needed. Our

first change was to replace the speak(text) { function, so that it would

return speech in French and not our original US English. We then moved

onto updating each of the speak() function calls to French-language

equivalents, before altering each of the commands into a similar French-

language version. Our final change group was to update annyang and

SpeechKITT – we applied the setLanguage command to tell annyang to

respond to French commands and updated speechKITT.min.js to show

localized text in French for the prompt.

Now, that lack of voice, how come things don’t appear to work, when

the code is perfectly valid? Well, that is down to a quirk with the Speech

Recognition API: there are certain words it finds difficult to understand

and render correctly, so instead will remain silent. The culprit in this case

is the use of the French name Hélène – the fix is to remove it and replace it

with a different name. In this case I would suggest something like “Alex”;

it’s very much a case of trial and error, before you find something that

works. The rest of the code works fine, so simply removing “Hélène” will

work just as well.

It’s arguable as to whether this is a bug as such – it’s more around the

fact that the API is still a work in progress, so still requires some technical

development before it has fully matured and is able to articulate these

errant words. It does also explain why, by the time you’ve finished with

updating this demo, you may end up with two or three names in use –

“Rachel” from the original demo, “Hélène” in this one, and whatever you

choose to use to replace it!

CHapTer 6 proJeCT: BUIlDInG alexa

183

Okay, let’s move on. We’ve explored how we can use annyang to

simplify implementing the Speech Recognition API (and as an alternative

to hard-coding it manually). Where next? There are a few things we can do

to help improve and develop our code further, so let’s take a moment to

explore how we can update it in more detail.

 Improving performance
Hopefully by now, if you’ve updated the demo, we have a working version

of Rachel, localized for French use (or your own language, if you’ve elected

to use something else). It’s a simple demo which shows how easy it is

to work with a language that is different from English – our demo does

however unmask a few things that we should consider correcting! Let’s

take a look in more detail:

• Our demo makes use of five different script files,

including the core one we created – this is a little

excessive! We should absolutely consider reducing our

reliance on libraries if we can: a quick win would be

to change the jQuery code at the end of scripts.js to be

vanilla JavaScript. (I used jQuery for convenience only!)

• If you take a closer look at the code for the French

version of our demo, you will see that I’ve not updated

the two joke entries. This is deliberate; the jokes I’ve

chosen will not likely translate that well into French,

so we should consider replacing them with French

jokes or with something else entirely. It’s an important

point – clearly not everything will translate across to

a different language in the same way, for a tool whose

default language is US English!

CHapTer 6 proJeCT: BUIlDInG alexa

184

• I would absolutely consider rationalizing the JSON

code used for the calls to OpenWeather and Wikipedia;

the core code is functionally the same, but the response

back will of course be different. This is a good example

where we can modularize this particular option to be

shared across multiple commands, should we decide to

add in more that make use of it.

• Should we even use annyang? I know this might sound

crazy (given that this chapter has been about using it),

but its use does come at a cost. We can of course merge

our minified files, but we should consider whether this

is worth the expense of lugging around a large file or if

we should write our code manually and drop the use of

annyang.

• There is a little slipup in our code. Have you spotted

where? If you look closely, we’ve specified a function

to call time for New York. Trouble is it’s based on

GMT+5 – this is fine for the United Kingdom (where I’m

based), but not for France! This is something we need

to allow for when localizing our application; not only

do we need to change languages but we also need to

make sure that our features also make sense.

• We’ve also made use of the Pixabay picture library in our

demo – there is nothing technically wrong with this, but

is this something we should use, given that most things a

smart assistant will do are likely to be verbal? Of course,

we could argue that some of the things they can do do

rely on using a PC or laptop. I guess it all depends on

how closely you want to mimic a real device!

CHapTer 6 proJeCT: BUIlDInG alexa

185

This is just a few things for us to consider changing – I’m sure you

will likely find more! It does go to show that in demos such as ours, we

can’t simply rely on updating text when localizing code. We also need to

consider aspects where values change because our country has changed

(such as time zones). It does also mean that if your target country has a

propensity to do things differently (e.g., use more mobile devices), then

this needs to be factored into our demo as well.

Okay, let’s move on. Assuming we make these changes, where next?

Well, this kind of functionality is absolutely open to being expanded. Let’s

take a look at a few ideas, to help get you started.

 Taking things further
“Aha, where next?” I wonder. Well, the world is our oyster, as they say. I’m

not sure where that saying came from, but as it implies, we are free to add

in all manner of different features, as long as we can code something that is

technically feasible.

To help with this, I’ve scoured through a few emails I’ve received over

the last 6 months, for ideas as to how we might be able to expand what we

can offer. Here is a list of a few ideas, to get your creative juices flowing:

• Play local radio station – this isn’t so easy; if you can get

the URL of your favorite radio station’s online player,

you could potentially fire a request remotely and use a

little JavaScript to automatically click any play buttons

that you might come across.

• Find your nearest supermarket/local store – this might

need to rely on one of the APIs from Google, but if you

want to avoid using that behemoth, you can use the

geolocation APIs already available in the browser, to

hard-code values for you. Once in, it’s a simple matter

CHapTer 6 proJeCT: BUIlDInG alexa

186

of using the Haversine formula (which we will see in

use in the next chapter), to work out the distance. It

may not be as pretty, but it will at least allow you to

code something to prove it works!

• Find a recipe containing X, where X is your favorite

food – for this, I would suggest firing a request to

Google to see what it comes back with, or you can try

using a service such as the Spoonacular API

(https://spoonacular.com/food-api), in a similar

fashion to how we use an API in the next chapter.

• Turn the background color of a page element in a

browser into a different color (simulate turning the

light into a different color) – okay, this is a simple

one, but it’s the principle that counts! It was inspired

by the range of smart bulbs you can now get, such as

the Philips Hue system; you can see a demo of how to

achieve this at https://mdn.github.io/web-speech-

api/speech-color-changer/.

• Count syllables in a word – yes, this indeed comes

from an email sent by Amazon; a (partial) screenshot is

shown in Figure 6-7.

Figure 6-7. (Partial) email from Amazon

CHapTer 6 proJeCT: BUIlDInG alexa

https://spoonacular.com/food-api
https://mdn.github.io/web-speech-api/speech-color-changer/
https://mdn.github.io/web-speech-api/speech-color-changer/

187

It might sound unusual, but in reality, it isn’t that difficult – we could

use a function similar to this, to count the syllables in our chosen word:

function new_count(word) {

 word = word.toLowerCase();

 if(word.length <= 3) { return 1; }

 word = word.replace(/(?:[^laeiouy]es|ed|[^laeiouy]e)$/, ");

 word = word.replace(/^y/, ");

 return word.match(/[aeiouy]{1,2}/g).length;

 }

console.log(new_count('sesquipedalian')); // the answer is 5

In case you’re wondering what sesquipedalian means, it is somewhat
ironic in this context. It can mean having many syllables, which is
very apt here!

• A somewhat more complex feature would be to try

adding products to Amazon’s web cart – it does involve

signing up for one of their APIs; if you’re curious, take a

look at the documentation available at https://docs.

aws.amazon.com/AWSECommerceService/latest/DG/

AddingItemstoaCart.html for more details.

Hopefully this has given you something to think about – we are really

only limited by our imagination and how far we want to take things! The

key to making this work is to keep things as modular as possible – if we

consider changing the commands block to accept commands from a JSON

file, then we can leave our core code untouched and work on editing the

JSON file for any updates.

CHapTer 6 proJeCT: BUIlDInG alexa

https://docs.aws.amazon.com/AWSECommerceService/latest/DG/AddingItemstoaCart.html
https://docs.aws.amazon.com/AWSECommerceService/latest/DG/AddingItemstoaCart.html
https://docs.aws.amazon.com/AWSECommerceService/latest/DG/AddingItemstoaCart.html

188

 Summary
The creation of a smart assistant might seem like a complex process, but

in reality, the core technologies are very straightforward to set up! Over the

course of this chapter, we’ve explored how we can use the Speech APIs to

create a working (if not basic) version of a smart assistant – we’ve assigned

to it a number of features, but can always add to them in the future. We’ve

touched on using some interesting concepts in this chapter, so let’s take a

moment to review what we have learned.

We kicked off by setting the scene for the chapter and exploring how

we would architect our demo; we touched on using an alternative speech

library, to provide a little variety to our demo.

Next up came the build process, where we added the markup and

script to make it come to life; we then took it apart before understanding

the featurette that initially prevented our demo from articulating any

responses. We then moved onto exploring how we can add new features,

by using the addition of an image as our example, before touching on how

to add language support to our demo. We then rounded out the chapter

with a brief view on some crucial changes we should make as well as how

we can develop our demo into something more useful as a production

application.

And rest! Yes, that was a simple chapter, but deliberately so. We have a

monster coming up shortly! Our next chapter will explore the use of some

API services to get data, when using the Speech APIs. Anyone for food? I’ll

explain that request, and more, in the next chapter…

CHapTer 6 proJeCT: BUIlDInG alexa

189© Alex Libby 2020
A. Libby, Introducing the HTML5 Web Speech API,
https://doi.org/10.1007/978-1-4842-5735-7_7

CHAPTER 7

Project: Finding
a Restaurant

“I’m getting hungry with all this coding… Surely it must be
time, right…?”

Yes, it’s time for some food! Rather than stay in, I want to go out. Trouble

is, where to? What style of food do I fancy? We could take a look online,

but that is so old-school. Why not simply ask our computer to tell us which

nearby restaurants serve the food we fancy?

Yes, we can use the power of the Speech APIs and the Zomato

restaurant search service to do the work for us. Over the course of this

chapter, we’ll explore how we can use the APIs with other services to create

some innovative apps to help satisfy that craving and keep you fueled and

ready for more coding.

 Setting the scene
While researching for the Raspberry Pi board demo back in Chapter 3,

it got me thinking, Could we use the Speech APIs to create a more useful

application that gets its source dynamically? Okay, the answer is almost

certainly going to be more of a case of how, not if, but stay with me. All will

become clear very shortly.

190

If we take another look at the code from that demo, you will see that it

is largely all hard-coded; after all, it was more about the Speech APIs than

finding a piece of technology named after my two favorite foods…but I

digress! To make using the Speech APIs more useful, we should try tying it

to a data source such as JSON or a SQL.

This just happens to be the subject for our next project. Over the

course of this chapter, we’re going to create a simple app to find suitable

places to eat in the beautiful city of Prague, in the Czech Republic. Why

Prague? Well, I happened to visit it on holiday before I started writing this

book – it is such a beautiful city, with gorgeous architecture and, of course,

lots of restaurants to visit.

Okay, with that in mind, we need to make a start with building our app;

the first stage is to set the parameters of what we will include in our demo,

so let’s dive in and take a look at this in more detail.

 Setting the parameters of our project
As with any project, we need to set the boundaries of what we will include

as our minimum viable product, at least for the purposes of this book.

It’s particularly important for this demo, as it has the potential to

develop into something much bigger; at the same time, we need to be

aware that it won’t be production-ready, but will at least give us the

opportunity to develop something more suitable for production use.

So, with this in mind, let us set the scene for our demo. Allow me to

introduce you to “Gofer Good Food” – a proof of concept bot application

for finding great restaurants in and around Prague. This is the kind of

app that could be made available as a free download by the local tourist

office; for convenience, we will create our initial MVP as a desktop version

to explore how it might work. Fortunately, we’ve already used one of the

technologies that we need, from earlier in the book. Let’s take a look at the

full list of features, in addition to the Speech APIs:

Chapter 7 projeCt: Finding a restaurant

191

• We will use the Zomato.js API for finding our

restaurants – although we’re using Prague as our

example, the same principles could work with any city

or area supported by the API.

• All responses during the search phase will be audio-

based – this covers both our requests to find suitable

restaurants and the responses from our app.

• Any responses which show the details of the restaurant

(such as maps, telephone numbers, etc.) will be

rendered on screen.

• We will make use of a service to provide a basic map

facility, showing where we are located in the city (we’ll

cover extending this to the restaurants later in the

chapter).

• Use a currency conversion process to show local prices

in a currency of your choice – for this book, we’ll keep

it to US dollars, but the principles will be the same for

other currencies.

• We’ll work out where you are located using longitude

and latitude values and use these to work out how far

away your chosen restaurant is located.

Great! There’s plenty for us to get started – I am sure that there are

more ideas we can come up with to develop this further. We’ll touch on

some ideas later in this chapter. For now, we’ll crack on with determining

the business logic for our app, but before we do so, there is something

important we need to cover off: setting expectations around how our proof

of concept will work.

Chapter 7 projeCt: Finding a restaurant

192

 Setting expectations
At this point, I can probably hear the voice in you say this: “Uh-oh, what

you do mean by…expectations…?” It’s a fair question, but there is a good

reason why we’ve called this demo a proof of concept. Let me explain

more.

We can never hope to do a full-sized demo such as this justice, in

the limited space we have available in this book; indeed, we could easily

fill the pages of an entire book in its own right! We also have the added

complication that the two core technologies in use (the chatbot framework

and the Speech APIs) are somewhat like chalk and cheese – neither offers

native support for each other, but with a little persuasion, they can be

made to work together.

It does mean though that things may not be 100% perfect – but if they

were, then life would be boring, right? I’m very much the kind of person

who believes in pushing the boat out to see how far things can go; yes, we

might find they don’t work, but we don’t know until we try!

Allowing for this, I would strongly recommend approaching this

project with an open mind – the Speech APIs work well with different

frameworks, so it’s very much a case of working out if something is

feasible and how far one can go with it. This next project won’t be

production- ready, but should offer us lots of opportunities to develop

the principle further into something more fully-fledged that real people

can use!

Okay, enough of the forewarning. Let’s turn our attention to

determining the business logic for this application, so we can see

how it will work in reality and where we might have opportunities for

development at a later date.

Chapter 7 projeCt: Finding a restaurant

193

 Determining the business logic
For the purposes of this project, we could ask for all manner of details when

it comes to determining which restaurants to return back to our user – the

thing is though, once you’ve asked one, it’s the same process to ask others!

With this in mind, we’re going to focus on asking just two questions:

the first will be which cuisine type the customer wants and the second

the price range. This way, we can keep the selection fairly wide, and it

provides a great opportunity for you to extend it at a later date. We’ll start

by initiating the request through one button, but use a separate one to

enable the microphone for each response – the latter will be kept nearer

the bottom of the app, so as not to obscure the results for our customer (it’s

a UX styling reason, not a technical one!)

Okay, let’s move on. Now that we’ve worked out the basics of what we

will do, it’s time to get technical and work out how we’re going to power

our demo. We’ve already made use of the two key APIs needed for this

application, but we need others; let’s take a look at the tools we need to use

for our project in more detail.

 Architecting our project
We could use a variety of different tools to complete this project – all of

which will have their own features or drawbacks, but for the purposes of

this demo, I’ve elected to use the following services:

• Zomato – they’ve collated the details of thousands

of restaurants worldwide and provide an API-based

service, where we can get details such as cuisine,

typical prices, reviews, and the like. We’ll make use of

their free API, to get the details we need for our app.

The data comes in JSON format – for convenience, we’ll

use jQuery to consume and present the data. We can

equally use vanilla JavaScript as well.

Chapter 7 projeCt: Finding a restaurant

194

Note using this api does require signing up for their service at
https://developers.zomato.com/api; this is free, as long as
you stay within the boundaries of their daily usage rate.

• RiveScript – we made use of this back in Chapter 3; this

time around, we will make the speech two-way, using

both the Speech Synthesis and Recognition APIs.

• Google Maps – although I’m personally not a fan of

having to use Google, they do provide a great mapping

service; we can embed it into our demo, so that we can

see where we are located in Prague.

• We’ll make use of the free currency converter API at

https://www.exchangerate-api.com/, to convert from

local currency to US dollars – we could hard-code this

if we wanted to, but adding in the API call will make

things more interesting for us!

• We’ll also make use of the SessionStorage API to

temporarily store values from the restaurant searches,

so that our bot can use them. There is a logistical

reason for doing this; we will explore this in more detail

toward the end of the chapter.

• As a bonus – and if space permits – we will briefly touch

on using a Click to Call approach when displaying

telephone numbers. Most mobiles will do this

automatically, but we can increase our chances if we

take some simple steps to reformat telephone numbers

correctly.

Chapter 7 projeCt: Finding a restaurant

https://developers.zomato.com/api
https://www.exchangerate-api.com/

195

At this point, there are a couple of limitations that we need to be aware of:

• For the Zomato API, we will host a copy of the JSON

file locally. The only reason for this is speed: the JSON

file is a weighty beast at over 6,500 lines! Don’t worry.

We won’t modify it. I will explain what changes need to

be made to switch over to using the version hosted by

Zomato at the end of the project.

• Our hosted version will only use the first 20 names

returned; we will go into what changes would be

needed to expand this later in the chapter.

Okay, now that we know what technologies we are going to use, it’s

time to get stuck into writing code! To help make things simple, we’ll break

this down into several stages: the first is setting up the basic files and

folders we need, so let’s take a look at what is involved in more detail.

 Setting up the initial markup and styling
As we will soon see, there is a fairly substantial amount of code in this

demo. For the purposes of this demo, we will skip over the HTML markup

and styling; this is standard code, based on code we’ve used in previous

demos. Instead, we will focus entirely on the critical part, the JavaScript to

see what’s needed to make our application operate as expected.

SETTING UP THE BASICS

there are a few things we need to cover off before we get into the real meat of

our code. Let’s take a look at this in more detail:

 1. We’ll begin by extracting a copy of the zomato folder from the

code download folder that accompanies this book – go ahead

and save it in our project area.

Chapter 7 projeCt: Finding a restaurant

196

if you see any references to “mini-project area” in the subsequent demos within

this chapter, they refer to this zomato folder.

 2. We’ve used a geolocation sVg by Freepik from the Flaticon

web site at https://www.flaticon.com/free-icon/

placeholder- filled- point_58960 – this i’ve included

in the code download. if you would like to use an alternative,

please alter the code accordingly.

 3. i would recommend having a json editor available –

there is a great one you can use online at https://

onlinejsoneditor.com/. the json file produced by

Zomato is enormous, so having something available that will

allow us to filter the data will be a great help!

 4. You will need the api key from Zomato that we mentioned at

the start of this exercise.

Okay, with these in place, let’s crack on with our demo.

 Initializing our project
The majority of the work needed to get our demo operational will be in

creating our script file – this will cover both of the Speech APIs and our call

to the Zomato data.

Chapter 7 projeCt: Finding a restaurant

https://www.flaticon.com/free-icon/placeholder-filled-point_58960
https://www.flaticon.com/free-icon/placeholder-filled-point_58960
https://onlinejsoneditor.com/
https://onlinejsoneditor.com/

197

INITIALIZING THE PROJECT

the first step is to set up a blank file for our code – go ahead and crack open

your text editor, then create a new file, and save it as script.js within the

js subfolder of our mini-project folder, before continuing with these steps:

 1. We have a fair amount of code to add – the first section will set up

the basic function and add in a number of variable declarations. go

ahead and add in the following code as indicated:

/*jshint esversion: 6 */

(function () {

 "use strict";

 let bot = new RiveScript();

 const message_container = document.querySelector('.messages');

 const question = document.querySelector('#help');

 const voiceSelect = document.getElementById('voice');

 const mylat = document.querySelector("span.lat");

 const mylon = document.querySelector("span.lon");

 const output = document.querySelector(".output_result");

 var cuisineType = sessionStorage.getItem("cuisine");

 var rating = sessionStorage.getItem("priceRange");

 var restCount = 0;

 var takeaway = "";

 /**/

}());

 2. next, we will add in a simple function to take care of working

out where we are located in prague. Leave a blank line after

the takeaway variable declaration, and then add in the following

code:

Chapter 7 projeCt: Finding a restaurant

198

 mylat.innerHTML = "50.0904752";

 mylon.innerHTML = "14.3889708";

 /*function getLocation() {

 navigator.geolocation.getCurrentPosition((loc) => {

 mylat.innerHTML = loc.coords.latitude;

 mylon.innerHTML = loc.coords.longitude;

 })

 }

 getLocation();*/

You will notice that this is commented out – this is deliberate. We will reveal why

later in this chapter.

 3. at this point, we’ve set up the initial declarations – go ahead

and save the file.

 4. Keep the file open as we will continue in the next exercise.

At first glance, you might think that only four steps seems like a really

short exercise! It’s a good point, but hey, we needed to start somewhere,

and I am sure you will not thank me for jumping in at the deep end, right?

Don’t worry – we still have plenty more code to cover. Let’s move onto the

next part, where we begin to make our bot talk back to us.

 Making our bot talk
Okay, that last comment might sound like we’re encouraging a recalcitrant

child to continually misbehave, but that could not be further from the

truth! In reality, this next demo is about giving our app the capability to

talk. It’s a two-stage process, where we define how our app should speak;

the “what to say” comes in a later demo.

Chapter 7 projeCt: Finding a restaurant

199

ADDING SPEECH CAPABILITIES

With that in mind, let’s make a start:

 1. after the comment line at the end of the previous block, leave

a line blank and then add in this function – it will take care of

loading voices into our demo:

 function loadVoices() {

 var voices = window.speechSynthesis.getVoices();

 voices.forEach(function(voice, i) {

 var option = document.createElement('option');

 option.value = voice.name;

 option.innerHTML = voice.name;

 voiceSelect.appendChild(option);

 });

 }

 loadVoices();

 2. We need to add in a second function – for some versions of

Chrome, voices have to be loaded asynchronously, so add in

this event handler:

// Chrome loads voices asynchronously.

window.speechSynthesis.onvoiceschanged = function(e) {

 loadVoices();

};

 3. the next function takes care of rendering error messages in

the browser’s console, if our application throws any during

operation. For this, leave a blank line, and then add in the

following code:

Chapter 7 projeCt: Finding a restaurant

200

window.speechSynthesis.onerror = function(event) {

 console.log('Speech recognition error detected: ' +

event.error);

 console.log('Additional information: ' + event.message);

};

 4. the crux of this part of the application comes next – here we

articulate each message provided by our bot, as and when

requested in the code. For this, add in the following code below

the onerror event handler:

function speak(text) {

 var msg = new SpeechSynthesisUtterance();

 msg.text = text;

 if (voiceSelect.value) {

 msg.voice = speechSynthesis.getVoices().

filter(function(voice) {

 return voice.name == voiceSelect.value;

 })[0];

 }

 speechSynthesis.speak(msg);

 }

the rest of this section switches to the code that we need to

add in for our bot – we’ll begin by declaring a reference to the

brain.rive file that we use to configure our bot. For this, add

in the next three lines after the closing bracket of the previous

function, leaving a blank line in between:

const brains = [

 './js/brain.rive'

];

Chapter 7 projeCt: Finding a restaurant

201

 5. We’ve seen the next two functions before, albeit a simpler

version of the first – we need to add in code to handle how

responses are rendered on screen by our bot. go ahead and

add in the following code below the brains const declaration:

function botReply(message){

 if (message.indexOf("No problem") != -1) {

 $.when(getRestaurants()).then(function() {

 restCount = sessionStorage.getItem("restCount");

 message = "No problem, here is the " + restCount +

" I've found:";

 message_container.innerHTML += `<div class="bot">

${message}</div>`;

 }).then(function(){

 $(".here").css("display", "block");

 output.textContent = "";

 });

 } else {

 message_container.innerHTML += `<div class="bot">

${message}</div>`;

 }

 location.href = '#edge';

}

 6. next, we need to add in the function that will take care of

rendering our responses on screen, when interacting with the bot:

function selfReply(message){

 var response;

 response = message.toLowerCase().replace

(/[.,\/#!$%\^&*;:{}=\-_`~()]/g,"");

 if (response.indexOf("No problem") != 1) {

 restCount = sessionStorage.getItem("restCount");

Chapter 7 projeCt: Finding a restaurant

202

 message = " No problem, here is the " + restCount + "

I've found:";

 }

 message_container.innerHTML += `<div class="self">

${message}</div>`;

 location.href = '#edge';

 bot.reply("local-user", response).then(function(reply) {

 botReply(reply);

 speak(reply);

 });

}

 7. With those two functions out of the way, we need to add in

three more to manage the initialization of our bot – the first is

this one:

function botReady(){

 bot.sortReplies();

 botReply('Hi there! Hungry? Looking for a restaurant here

in Prague?');

}

 8. the second takes care of what should happen if the bot is not

able to be initialized:

function botNotReady(err){

 console.log("An error has occurred.", err);

}

 9. our bot can’t be initialized automatically (we will explain why

later) – to get around this, we need to add in an event handler

for the start a search button. For this, go ahead and add in the

following code:

Chapter 7 projeCt: Finding a restaurant

203

question.addEventListener("click", function() {

 speak("Hi there! Hungry? Looking for a restaurant here

in Prague?");

 bot.loadFile(brains + "?" + parseInt(Math.random() *

100000)).then(botReady).catch(botNotReady);

});

/**/

 10. We’re done with this section. go ahead and save the code.

Leave the file open though, as we will continue with the next

part shortly.

Okay, so we’re done with the first part, but there’s still plenty to go! At this

point we should now have the basic container function in place, along with

our initial variables and the first part of the process in making our bot talk.

The next part of this project is where things get a little more complex –

before we can allow our bot to articulate what it has found, we have first

to get it to find something to talk about! Yes, the next part is where we go

digging for details of restaurants that match our criteria. Let’s dive in and

take a look at the mechanics of how in more detail.

 Getting the restaurant details
This next section is where things get more interesting – it’s where we can

really begin to show off how the Speech APIs can work with other services

that we can consume.

Over the course of the next few pages, we’re going to work our way

through getting details of selected restaurants using the aforementioned

Zomato service and assemble the results in a format that can be displayed

on screen.

Chapter 7 projeCt: Finding a restaurant

204

SEARCHING FOR RESTAURANTS

Let’s make a start with adding in the code:

 1. the first part we need to add takes care of working out the

distance between two points of latitude and longitude, so we

can indicate how far away the restaurant is from our present

location. For this, leave a blank line underneath the previous

event handler, and then add in this function:

function distance(lat1, lon1, lat2, lon2) {

 var p = 0.017453292519943295; // Math.PI / 180

 var c = Math.cos;

 var a = 0.5 - c((lat2 - lat1) * p)/2 +

 c(lat1 * p) * c(lat2 * p) *
 (1 - c((lon2 - lon1) * p))/2;

 return 12742 * Math.asin(Math.sqrt(a)); // 2 * R;

R = 6371 km

}

 2. next comes the critical part of this section – the call to Zomato

to get details of restaurants that fit our selection criteria. For

this, we have a somewhat lengthy function to add in, so we’ll

break it into sections; go ahead and add in this part first:

function getRestaurants() {

 $.ajax({

 method:'GET',

 crossDomain: true,

 url: 'js/restaurants-prague.json',

 dataType: "json",

 async: true,

 headers: {

Chapter 7 projeCt: Finding a restaurant

205

 "user-key": "c697ba51c6b29523f885bb3a8b279c93"

 },

 success: function(response){

< ADD IN CODE HERE >

 }

 });

}

/***/

 3. We can now add in the three blocks of code which we need to

make this work – the first is used to filter the json file based

on our selection criteria. go ahead and drop the following lines

of code in, replacing the <ADD IN CODE HERE> comment

from the previous step:

/* filter on cuisine type and user rating */

var returnedData = $.grep(response.restaurants, function

(element, index) {

 return ((element.restaurant.cuisines == cuisineType) &&

(element.restaurant.price_range == rating));

});

 4. the next block of code takes care of storing the number of

restaurants found as a sessionstorage value – this is used to

update the response back from our bot. go ahead and add in

these lines of code below the grep function, leaving a line blank

in between:

// Work out how many restaurants and store in session Storage

restCount = (returnedData.length == 1 ? "1 restaurant" :

returnedData.length + " restaurants");

sessionStorage.setItem('restCountValue', restCount);

Chapter 7 projeCt: Finding a restaurant

206

 5. next up is the real meat of this part of the demo – here we

retrieve the various values from our filtered json data and

render them on screen. this takes the form of a nested set of

for… statements – go ahead and add in the following code

after the previous step, leaving a blank line in between:

 for(var i=0; i<returnedData.length; i++){

 var distanceaway = distance(mylat.innerHTML, mylon.

innerHTML, returnedData[i].restaurant.location.latitude,

returnedData[i].restaurant.location.longitude);

 for(var x=0; x<returnedData[i].restaurant.highlights.

length; x++){

 if (returnedData[i].restaurant.highlights[x] ==

"Takeaway Available") {

 takeaway = "Yes";

 }

 }

 var newDiv = $("<div class='card'>");

 newDiv.append(

 $("<div class='card-body'>").append(

 $ ("").html("<img src=" + returnedData[i].

restaurant.thumb + "><h1><a href=" +

returnedData[i].restaurant.menu_url +

">"+returnedData[i].restaurant.name+"</h1><img

class='rating_img' src='./img/" + returnedData[i].

restaurant.price_range + ".png'><span

class='distance'>" +

distanceaway.toFixed(2) + " kms"),

 $ ("<p>").html("Tel. Nos: " + returnedData[i].

restaurant.phone_numbers),

 $ ("<p>").html("Rating: " +

returnedData[i].restaurant.user_rating.aggregate_

rating + " / 5 "),

Chapter 7 projeCt: Finding a restaurant

207

 $("<p>").text("Address: " + returnedData[i].restaurant

 .location.address),

 $ ("<p>").text("Cuisine: " + returnedData[i].restaurant.

 cuisines),

 $ ("<p>").text("Average cost for two: " + returnedData[i].

restaurant.average_cost_for_two + " " + returnedData[i].

restaurant.currency + " (or USD " + amt + ")"),

 $("<p>").text("Is takeaway available: " + takeaway),

 $ ("<p>").text("Latitude: " + returnedData[i].restaurant

 .location.latitude),

 $ ("<p>").text("Longitude: " + returnedData[i].restaurant

 .location.longitude),

 $ ("<p>").html("<a href=" + returnedData[i].restaurant.

url + ">Link to Restaurant")

)

);

 $(".here").append(newDiv);

 // reset

 distanceaway = 0;

}

 6. phew! that was some function, huh? don’t worry – we’re at

the end of this section. We have one more section to add in to

complete this file. go ahead and save your work thus far – you

can keep the file open, as we will be back shortly to add in the

remaining code.

Okay, we’re making good progress. The bulk of the code for this file is

complete. We have one section left to do, before switching to configure our

bot – and that is to add in the Speech Recognition API.

Chapter 7 projeCt: Finding a restaurant

208

We’ll be using this to dictate our choices to the app – it means that

rather than enter text in (as we did in previous demos from earlier in the

book), we can now simply speak and the app will translate it into written

text. Let’s dive in and take a look at how we can reuse code from earlier

demos into something a little more practical.

 Adding speech input capabilities
For the last part of the script.js file, we need to add in code to allow our bot to

recognize verbal commands from us; hopefully you will recognize much of

the code from earlier demos, even though we’ve repurposed it into our app!

In reality, much of the basic framework for the Speech Recognition API

(and its sister, the Speech Synthesis API) is unlikely to change dramatically

from project to project; it might look different, but if you look at the code

closely, you will see the same constructs appear, such as speechstart and

result. With this in mind, let’s take a look at how we can reuse our code

from earlier demos to complete this part of the project.

ADDING SPEECH

okay, let’s crack on and add in the final part of the code for our script.js file:

 1. We’ll begin by leaving a blank line under the previous comment

and then adding in this getUserMedia call:

navigator.mediaDevices.getUserMedia({ audio: true

}).then(function(stream) {

<ADD CODE IN HERE >

 }).catch(function(err) {

 console.log(err);

 });

Chapter 7 projeCt: Finding a restaurant

209

 2. next, leave a blank line, and then replace the phrase <ADD

CODE IN HERE> with these variable and property declarations:

 const SpeechRecognition = window.SpeechRecognition ||

window.webkitSpeechRecognition;

const recognition = new SpeechRecognition();

recognition.interimResults = false;

recognition.maxAlternatives = 1;

recognition.continous = true;

 3. next up come the event handlers that take care of managing

the speech recognition service or responding to events as they

occur. the first deals with starting the service when we click

the Click and talk to me! button:

 document.querySelector("section.speech > button")

.addEventListener("click", () => {

 let recogLang = "en-US";

 recognition.lang = recogLang.value;

 recognition.start();

});

 4. the next event handler we need to add in takes care of

detecting the presence of speech, that is, we’ve started to talk.

For this, leave a blank line, and then add in the following code:

recognition.addEventListener("speechstart", () => {

 console.log = "Speech has been detected.";

});

 5. in the same vein, we have an event handler to take care of

when the speech recognition service detects a word or phrase

that has been properly recognized and returned back to our

app. We use this as a trigger for our bot to display the next

question – for this, go ahead and add in this code:

Chapter 7 projeCt: Finding a restaurant

210

recognition.addEventListener("result", (e) => {

 console.log = "Result has been detected.";

 let last = e.results.length - 1;

 let text = e.results[last][0].transcript;

 output.textContent = text;

 selfReply(output.textContent);

});

 6. We have two event handlers left. When we’re done talking, we

need to signal this to the api; the speechend event handler

takes care of this for us:

recognition.addEventListener("speechend", () => {

 recognition.stop();

});

 7. in the event of any errors, we need something to display a

suitable error message in our browser’s console area. For this,

we use the aptly-named error event – go ahead and add in the

following code after the previous event handler:

recognition.addEventListener("error", (e) => {

 console.textContent = "Error: " + e.error;

});

 8. We’re done with this file now – go ahead and save your work

and then close it for now. the remaining code we will add in a

separate file.

Phew! We’re done – at least with this file! Granted it was a lot to work

through, but setting it up so that we could have tested changes earlier

would have been tricky and made the steps for assembly a lot more

complex. Still, if you managed to get this far, then well done. Take a

breather and get yourself a drink as celebration!

Chapter 7 projeCt: Finding a restaurant

211

Okay, back to reality, we have one more section to take care of, which

is telling our bot what to say. Although we have a good few steps to work

through, I promise you the code will be a lot simpler, so without further

ado, let’s dive in and take a look.

 Configuring the bot
This next section should be somewhat familiar to you, at least in terms of

constructs – it’s time to set up the various responses for our bot to articulate

to us as customers. We’ll be using the RiveScript bot framework for this, in

a similar fashion to the demo from earlier in the book; this time around, we

will extend the use of some of the features we first used back in that demo.

ADDING SPEECH

okay, let’s get started:

 1. the first step in configuring our bot is to open a new file and

then add this statement – this tells our bot to use version 2 of

the rivescript interpreter:

! version = 2.0

 2. next, leave a blank line, and then add in this first function – this

takes care of substituting one of the food types with a format that

can be recognized by Zomato and rendering it into sessionstorage

in the right case before continuing with the next question:

> object foodtype javascript

 var newFood

 for (var i = 0; i < args.length; i++) { newFood = args[i] }

 if (newFood == "local") { newFood = "Czech" }

 newFood = newFood.charAt(0).toUpperCase() + newFood.slice(1)

 sessionStorage.setItem("cuisine", newFood)

Chapter 7 projeCt: Finding a restaurant

212

 return "Do you have a price range in mind - budget,

midrange, or expensive?"

< object

 3. We have a second function to add in – for this, leave a blank

line and then add in this code, to take care of storing the right

value for the available price range values offered by Zomato:

> object rating javascript

 var priceRange

 for (var i = 0; i < args.length; i++) {

 priceRange = args[i]

 }

 if (priceRange == "budget") { priceRange = 1}

 if (priceRange == "midrange") { priceRange = 2}

 if (priceRange == "highend") { priceRange = 3}

 sessionStorage.setItem("priceRange", priceRange)

 return "Ok let us see what I can find..."

< object

 4. our third (and final) function gets the number of restaurants

found by Zomato, which is then rendered as part of the

conversation with the bot:

> object restCount javascript

 return sessionStorage.getItem("restCountValue")

< object

 5. next up, we need to start adding in the statements that

simulate the conversation we will have with the bot. For this,

we will actually start with the response from the first question –

go ahead and leave a blank line, and then add in this code:

+ search restaurants

- Ok. Searching for a restaurant - what cuisine would you

like? Indian, Italian or something else?

Chapter 7 projeCt: Finding a restaurant

213

 6. We now need to take care of the desired food type – for this,

go ahead and add in the following code after the previous step,

leaving a blank line in between:

+ i would prefer (chinese|indian|local|mexican) please

- <call>foodtype <star></call>

 7. the final question we need to ask is around the price range –

for this, go ahead and add in the following code, leaving a blank

line in between:

+ (budget|midrange|expensive)

- <call>rating <star></call>

^ I have found a selection of restaurants for you! Would

you like to see the restaurants I've found?

 8. the last step is to confirm that we want to see the available

restaurants that fit our chosen criteria – for this, leave a blank

line, and then add in the following code:

+ yes please

- No problem, here is the <call>restCount</call> I've found:

 9. We have one final block to add in – this is a generic catch-all,

in the event that we either don’t say the right text or the api

doesn’t recognize something we’ve said. Leave a line, and then

drop in the following code:

+ *
- Sorry, I did not get what you said

- I am afraid that I do not understand you

- I did not get it

- Sorry, can you please elaborate that for me?

 10. at this point, we’re done with editing. save the file as brain.rive

in the js subfolder of our mini-project area and then close it.

Chapter 7 projeCt: Finding a restaurant

214

We’re almost at a point where we can test our project, but before doing

so, there is one more part we need to fix. Yes, I did indeed say that we had

finished with script.js, but if you take a really close look, you might see a

problem.

Okay, I confess “problem” might be too strong a word, but

nevertheless, if we don’t do this next section, then it’s likely you will see

(or USDundefined) appear in the final result! Yes, we put in a variable

distanceaway to display the converted amount in US dollars in step 5

of the “search restaurant details” demo, but haven’t put something in to

perform that conversion… D’oh!

Don’t worry. It’s an easy fix. It allows us to make use of another API, so

let’s take a look at how this feature fits into our overall demo in more detail.

 Converting currencies into US dollars
If we take a closer look at the code (as indicated in Figure 7-1), we can

indeed see the distanceaway variable being referenced – a quick search of

the rest of the file won’t show any other reference to it.

Figure 7-1. The distanceaway variable being used…

It’s an easy fix, so let’s make a start on adding it in as our next demo.

Chapter 7 projeCt: Finding a restaurant

215

DISPLAYING USD CONVERSION

to fix the issue, go ahead and follow these steps:

 1. We’ll begin by reopening the script.js file and then looking for

the comment line that sits just before the distance function.

 2. Leave a blank line underneath it, and then add in this variable

declaration:

var amt;

 3. under that declaration, leave a blank line, and then drop in this

function:

$.getJSON('https://api.exchangerate-api.com/v4/latest/

CZK', function(data) {

 var currencies = [];

 $.each(data.rates, function(currency, rate) {

 if (currency == "USD") {

 amt = (rate * 300).toFixed(2);

 }

 });

})

 4. go ahead and save the file – we can close it. Your demo is now

finally complete!

Okay, our code really is complete this time! With the final function in

place, let’s turn our attention to testing the demo, so you can see how both

of the Speech APIs can interact with other services used in this demo.

Chapter 7 projeCt: Finding a restaurant

216

 Testing the demo
Here comes the most interesting part, and perhaps the most nerve-

wracking: it’s time to test our demo!

For this, you will need to browse to https://speech/restaurant;

when launching the demo for the first time, we will see something akin to

the screenshot shown in Figure 7-2.

Figure 7-2. Our completed demo, ready to accept input

To operate it, I would suggest using this approach, where your

responses are indicated in bold text:

Chapter 7 projeCt: Finding a restaurant

217

• Click Start a search. Then wait for the initial welcome

message to appear and be spoken.

• Say search restaurants when prompted.

• At the request for type of cuisine, say I would prefer
local please.

• When prompted for the price range, say midrange.

• When the bot confirms it has found some results, say

yes, please.

It might sound like we’re steering the test toward a known scenario and

not anticipating what a user might say, but this is deliberate. This has the

benefit of exposing both how well the demo works technically and whether

the questions posed by the user would be natural – in this case, I suspect

there is room for improvement!

Leaving that aside for the moment, we can begin to see how the demo

works in Figure 7-3.

Figure 7-3. The first part of our demo in action...

Chapter 7 projeCt: Finding a restaurant

218

If we progress through each step, we can see what the final result looks

like in Figure 7-4, shown overleaf.

Figure 7-4. The second part of our demo in action

Chapter 7 projeCt: Finding a restaurant

219

As we can see from the screenshot in Figure 7-4, we’ve included basic

details for each restaurant, along with a link that will take the customer

back to the Zomato web site for that restaurant – this being useful to view

extra details, such as opening hours and reviews. The details we’ve added

here can absolutely be adjusted – each is fetched from within the JSON

object for that restaurant and displayed as text (or within HTML markup),

as appropriate.

We’ll touch on expanding this later in this chapter.

Okay, now for the important part? How does our code work? We’ve

covered some useful APIs within the course of this demo, so let’s take a

moment to review what we’ve used in more detail, before we take a look at

how we could improve our code as part of any future development.

 Dissecting our code in detail
Over the course of this chapter, we’ve covered a substantial amount of

code – the bulk of it lies in our script.js and brain.rive configuration

files. Much of it uses principles we’ve covered in earlier demos, so should

be starting to look familiar by now!

However, given that the two core technologies used don’t provide

native support for each other, it’s worth taking some time to explore how

we’ve managed to get the two communicating to each other in more detail.

With that in mind, let’s first take a look at the HTML markup in more detail,

before moving onto the script.js and brain.rive files in turn.

Chapter 7 projeCt: Finding a restaurant

220

 Dissecting our HTML markup
Much of what is in this file is fairly straightforward – once references to

the CSS styling files have been defined, we set up a #page-wrapper div

to encompass all of our content. We then create a .voicechoice section

to house the drop-down that allows us to choose which language the bot

should use, along with displaying the default voice set for the customer.

Next up comes the .location section, which we use to render hard-

coded values representing the longitude and latitude coordinates of our

chosen hotel, as well as a (working) Google Maps image showing where

the hotel is in Prague.

We then have the #help section which is where the conversation is

hosted; the last entry is then reformatted by our script file to host the

results found from the Zomato data (more on this later). We then round

out this part of the demo with the .speech section, which contains the

button to fire the Speech Recognition service, as well as a suitably located

.output area to display our responses.

 Breaking apart the main script file
This is where things get more interesting and start to come together – our

script.js file hosts most of the code needed to run our demo. We kick off

with a block of variable declarations; this contains a commented-out

block of code which we will use to provide our location using the HTML5

Geolocation API (more on this later in this chapter).

 The Speech Synthesis API and our bot

With the declarations out of the way, we then have the loadVoices()

function, which is used to load the voices provided by Google into the

.output_result drop-down box that we set up in our markup file. Note

how we have also provided an event handler for the onvoiceschanged

Chapter 7 projeCt: Finding a restaurant

221

event– some versions of Chrome required that these voices be loaded

asynchronously, although that should be less of an issue with more recent

versions of Chrome. We then move onto the speak() function, which is

where we configure a new instance of the SpeechSynthesisUtterance

interface, before providing it with the selected voice from the voiceSelect

drop-down and the text to say from the msg variable.

Next up, we move into the code needed for our bot to operate – we

begin with a declaration that stores a reference to our brain.rive file before

running the botReply() and selfReply() functions. These are a little more

complex, so here is a breakdown of what they do, starting with the botReply

function, which we use to render responses from our chatbot:

• All messages displayed on screen from our bot are

passed through the message placeholder variable – we

first examine the contents of this.

• If the message variable contains the text “No problem,”

we use this as a trigger to first search the JSON provided

by Zomato, before storing a count of the number of

restaurants returned.

• We then adjust the message accordingly, before

building up the markup and rendering both on screen

in the .here div and resetting the .output_log div.

• If, however, we have not found an instance of “No

problem,” then we simply display the message on

screen and move to the next response from the

customer.

in case you’re wondering why we use “no problem,” it’s simple: we
need to use a trigger phrase to intercept and alter the message back
to the user. it doesn’t feature any other text elsewhere in our demo!

Chapter 7 projeCt: Finding a restaurant

222

The other of our two Reply functions is the selfReply – this is the

one used to transform the text of our answers into something that can be

processed by our bot. In order, this is what happens:

• We first assign the response variable – this is used to

store a copy of the text of our request, before turning

it into lowercase and removing punctuation or special

characters from it (these have to be omitted for

RiveScript to operate correctly).

• We then check the contents of the message – as before,

if it contains “No problem,” we intercept it and alter it

to display the restaurant count value which we get from

session storage.

• We then reformat the message with appropriate

markup before rendering it on screen and pushing it to

the speak function to be echoed verbally.

We then round out this part of our demo with two system functions

and an event handler – the first two are used to prepare the bot for running

(botReady), and what happens if the bot is not available (botNotReady).

We then use both in the question event handler, which loads the brain.rive

file before initializing our demo.

 Fetching the restaurant data

This next section may seem the most complex, but in reality, much of

it is taken up by the AJAX request we make to load the data into our

demo. We kick off with two functions: The first calls a service provided

by ExchangeRate-API.com, to get the US dollar equivalent for each price

we use. The second, distance, is used to calculate how far away each

restaurant is from our present location.

Chapter 7 projeCt: Finding a restaurant

223

The core part of this section is the getRestaurants() function – this

is where we load our JSON file, before using $.grep to filter out any

restaurant that does not match our requirements. We then work out

how many restaurants are returned (restCount), before storing this as

a value in Session Storage. We then iterate through each restaurant, to

first work out the distance from our location (distanceaway), then if it

offers takeaway, and rendering the results as individual cards which are

appended to the .here element on screen.

 Usage of the Speech Recognition API

The final section of the script file contains the code we’ve used to

recognize our verbal commands – much of it is reused from earlier demos,

so should begin to look familiar at this stage! Nevertheless, it’s still worth

going through it in more detail, as a recap.

We kick off by using getUserMedia to allow us access to our

microphone from the browser – once this is initialized, we then define

a SpeechRecognition object, based on which version is supported by

our browser. At the same time, we set a number of properties, including

interimResults and continuous.

We then have a set of event handlers to manage what happens when

we talk. The first initializes the service when we hit the button located at

the bottom of our demo. We then have speechStart and result, which

identify if anything has been spoken or if we have a result that has been

recognized by the service, respectively. Within the result event handler,

we get a copy of the transcript and assign this to the text variable, before

displaying it on screen and passing it to our bot to articulate it verbally. The

remaining two event handlers, speechend and error, take care of when

we’ve finished talking or if we have an error that crops up during usage of

our demo.

Chapter 7 projeCt: Finding a restaurant

224

 Exploring the bot configuration file
The final part of our code is the brain.rive configuration file we use for

our bot – in comparison to the script file, it will seem like a leisurely walk in

the park!

We start by declaring which version of the RiveScript interpreter

should be used – in this project we use version 2. This is followed by three

RiveScript functions – these are termed as objects in RiveScript, but work

in the same way as standard functions. In the first, we iterate through

any parameters passed, before substituting instances of local for Czech

(needed for Zomato) and then storing a reformatted version in Session

Storage. We then return back the next sentence to use, which asks which

price range our customer wants to use.

The second function works in a similar fashion – this time though, we

convert the price range specified by our customer into a number. The latter

is needed for Zomato to operate correctly. We round out this function by

returning confirmation that our bot will search the database for us. In the

third function, we simply get back the value of the number of restaurants

found, which we then articulate on screen to our customer.

The rest of the configuration file contains each of the statements we

use to run our conversation with the bot – note that we’ve used the same +

symbol to denote a trigger for our bot and the responses are specified with

a – sign before each one. There are several <call...> statements in use;

these call the functions (or objects) specified at the start of the file. The

final part (starting with the * symbol) is a generic catch-all that kicks in if

the bot has a problem understanding what we’ve said or it doesn’t match

what it is expecting to see on screen.

Chapter 7 projeCt: Finding a restaurant

225

 Taking things further
Now that we have a working demo, where do we go from here? Well, there are

a good few options we could look at incorporating into such an application,

if we were to decide to take things further. Let’s take a look at a selection:

• Add in error handling and system messages – our demo

relies on us saying the right commands, but with the

best will in the world, we don’t always get it right! The

demo needs something to help inform the user when

there is an issue and how best to handle it.

• Examine the statements used in our bot conversation –

there are instances where we might want to look at

putting in a pause, such as when we say, “OK, let us see

what I can find…” At present, this jumps straight into

finding an answer, which isn’t very realistic!

• We’ve inserted the latitude and longitude values

provided by Zomato as numbers, but what about

converting them to a map link, using a service such as

Google Maps or OpenStreetMap?

• Add in confidence levels – the Speech Recognition API

is still a work in progress; it is very good at recognizing

content, as long as you say it clearly. Providing some

visual feedback will help encourage the user to alter their

approach if the confidence levels being reported are low.

• Provide better visual cues as to what to say – we’ve put

some limited options within our brain.rive file, but

the demo doesn’t indicate what to say at all! A great way

to improve this would be to put some text in a smaller

font under each of the questions, so the customer

knows what to say to trigger a suitable response.

Chapter 7 projeCt: Finding a restaurant

226

• Adding in language support – this is an almost essential

prerequisite, in todays’ world; it might even help to

localize values such as average costs of meals into the

customer’s local currency, rather than provide them in

a currency which isn’t as familiar!

• Merge the two buttons used in the demo into one – we

have to provide one to fire the Speech Synthesis API, as

browsers won’t allow this to fire automatically once the

page is loaded. This would involve some rework of the

code required to fire the speak() function, as well as

testing the points where it needs to be called in code.

• There are occasions where we might not get a complete

result back from our demo, so the bot ends up saying

there aren’t any restaurants, when this might not be

the case! The JSON file is enormous, so is there a better

way of making this more resilient and less prone to

misreporting?

• We could even go as far as checking to see if a booking

could be made directly from the app; this might be as

simple as an email or phone call, but anything to help

the customer will be appreciated!

Although there are indeed plenty of things we could do to improve and

extend our demo, I want to pick up on three simple changes that we can

make right now with little difficulty. These are to format contact numbers

using the tel: format, adding a geolocation-based feature, and extending

the amount of data we show to the customer. These are simple changes we

can effect, so without further ado, let’s dive in and take a look, beginning

with the formatting of contact details.

Chapter 7 projeCt: Finding a restaurant

227

 Formatting telephone numbers
For the first of the three changes we’ll be covering, I want to explore how

the phone numbers listed in the demo are formatted.

Yes, I know this might sound a little silly, but bear with me on this, and

all will become clear.

This isn’t something we are likely to do from a laptop or desktop,

but for those users who access the Internet from smart devices, we can

automatically format numbers to allow them to be called directly from

the page. This is known as the “Click to Call” service – with a few simple

changes, we can set all of our numbers to be displayed accordingly.

Let’s take a look at the changes we would need to effect:

• The number should be provided in the international

dialing format, with the plus symbol, country code,

area code, and number. Using the Naše maso restaurant

featured in Figure 7-4, we would write our link thus:

+ 420 (2)-22312533

• Although it’s not obligatory, adding hyphens as shown

in this example will help with better detection.

• Mobile browsers should detect numbers automatically,

although Mobile Safari will go further and convert

them to the right format automatically. If you want to

disable it so that you can maintain a consistent format

across all browsers, then add this meta tag at the head

of the HTML markup:

<meta name="format-detection" content="telephone=no">

These are simple changes we can make to our demo and will provide

an extra touch to anyone using the application on a device that can make

or receive phone calls.

Chapter 7 projeCt: Finding a restaurant

228

Okay, let’s change tack. The second of our three changes is centered

around location; our demo is currently hard-coded to one hotel to prove it

works, but isn’t useful if you can’t stay there! Let’s adapt the code to make it

more dynamic. We’ll do this in the next exercise.

 Adding location-based facilities
Our demo used hard-coded details of the Hotel Savoy, based on the

outskirts of Prague – it’s a gorgeous hotel I was lucky enough to be able to

stay in, but as a five-star outfit, I know that not everyone can afford it! So, to

allow for this, we should make our location values more dynamic – there is

no better way to do this than by using the Geolocation API.

Support for this API is not an issue within desktop browsers; it is

covered by all of the major browsers, as indicated in Figure 7-5.

Figure 7-5. Support for the HTML Geolocation API
Source: caniuse.com

There is no real concern either for mobile devices; all except Opera

Mini are known to offer native support this API. (Opera Mini shows

minimal usage, so this is not likely to be an issue either!)

Chapter 7 projeCt: Finding a restaurant

229

With this in mind, let’s take a look at how we can update our demo –

we’ve already done some of the hard work needed, so let’s look at what is

required to complete it and get it operational.

DEMO: ADDING LOCATION-BASED DETAILS

adding in basic geolocation is very easy, at least to give us current longitude

and latitude values. to do this, follow these steps:

 1. as a quick test, open up a browser’s console area, and then

drop in this code:

navigator.geolocation.getCurrentPosition(function(location) {

 console.log(location.coords.latitude);

 console.log(location.coords.longitude);

 console.log(location.coords.accuracy);

});

navigator.geolocation.getCurrentPosition((loc) => {

 console.log('The location in lat lon format is: [', loc.

coords.latitude, ',', loc.coords.longitude, ']');

 2. this should give us values similar to the ones we originally

hard-coded in our demo.

 3. now that we’ve tested it, we need to adjust our code – we’ve

already included the function part of this code in our demo,

although we’ve not enabled it. to do so, look for these lines and

comment them out:

mylat.innerHTML = "50.0904752";

mylon.innerHTML = "14.3889708";

 4. next, remove the comments around the block that immediately

follows, from function getLocation()... down to (and

including) the getLocation() function call.

Chapter 7 projeCt: Finding a restaurant

230

 5. save the changes – your code is now location aware and won’t

rely on fixed values. if you refresh the demo, you will see new

numbers appear for the distance values for each restaurant the

app displays on screen.

The downside of doing this means that we will need to effect changes

elsewhere; otherwise, we might get some abnormally high values as it

will calculate based on wherever you are in the world, which is unlikely

to be in Prague!

The great thing though about this demo is that we can change it to

report on restaurants in any of thousands of locations worldwide, so there

is bound to be something available near to where you live.

 Displaying more details about restaurants
Our third and final change is more a matter of taste – there is a whole host

of different values we could incorporate into our demo! This might include

examples such as opening times, online delivery, or if table reservations

are available; it’s a matter of perusing the raw JSON data and choosing

which details we want to display.

To help with this, I would recommend copying the raw JSON file into

a JSON editor and then using it to browse through the data. An online one

such as JSON Editor Online (https://jsoneditoronline.org/) works

perfectly well for this purpose, as indicated in Figure 7-6.

Chapter 7 projeCt: Finding a restaurant

https://jsoneditoronline.org/

231

If you use JSON Editor Online, you can click each key value (to the left

of the colon in the highlighted example) and get the full path to that value

within the file. In the case of the highlighted example, we would end up

with this code, which we could put into our demo:

$("<p>").text(

 "Latitude: " + returnedData[i].restaurant.timings

),

There’s a whole host of other values you can try, so feel free to browse

through the file and decide which to try!

 Summary
Wow, that was some monster project! The Speech APIs are one of those

technologies though that can be used in all manner of situations such as

finding restaurant details. We’ve covered some useful techniques throughout

this chapter, so let’s pause for a moment to review what we’ve learned.

We kicked off by setting the scene, parameters, and business logic to

use in our project, before exploring how we would architect our demo and

setting some expectations as to its usage. We then moved onto setting up

the initial markup for our project, before adding in the various sections of

our script, such as the facilities to speak or finding the restaurant details.

Figure 7-6. JSON Editor Online in use

Chapter 7 projeCt: Finding a restaurant

232

Next up, we then ran through testing our demo, before dissecting

our code in some detail, to understand how the latter works and see the

similarities with earlier examples of the Speech API. We then rounded out

the chapter with a look at how we could take things further – this explored

some ideas around improving our existing code, as well as adding new

features as part of developing this into something that can be put in front

of real customers.

Okay, let’s move on. We still have more to cover! Hands up how many

of you use an online music streaming service, such as Deezer or Spotify?

I’ll bet there will be a fair few of you to whom this applies: what if we could

use our voice to control how we play our music? Yes, you heard me right.

Keep with me, and I will reveal all in the next chapter.

Chapter 7 projeCt: Finding a restaurant

233© Alex Libby 2020
A. Libby, Introducing the HTML5 Web Speech API,
https://doi.org/10.1007/978-1-4842-5735-7_8

CHAPTER 8

Project: Finding and
Playing Music
I love listening to music – there is something to be said for plugging into

your favorite artist while spending hours developing code or writing books.

As long as I have a drink to hand too, then I’m happy. But I digress.

Prior to digitizing my entire music collection and discovering the joys

of online music streaming, I used to wade through hundreds of CDs. Let’s

just say it was something of an eclectic collection; it didn’t matter what it

was – there was something about dropping in a CD and hitting play. Those

days are now long gone, since converting to using Spotify – it’s a lot easier

to find my music, and I certainly don’t have to worry about space!

Since converting to using Spotify, it got me thinking, Would it be

possible to control it using my voice? Over the course of my research,

I’ve not found anyone yet who has done something similar, at least with

Spotify; would that mean no one has managed to do it, or had the desire to

do so? I wonder. As I’m a keen fan of pushing the boat out and exploring

what I would hope to be uncharted waters, I thought, Why not give it a go?

234

 Setting the background to our project
Over the course of this chapter, we’re going to assemble a quick and dirty

app to play back a chosen album, using the Spotify API from within our

browser. As part of this, we will add in these features:

• The app will have (almost) full control by voice, using

the Speech Recognition API – the only parts not

controllable will be the initial authorization process

and the first playback from the real Spotify client (more

on this anon).

• We will be able to do basic tasks such as play or pause

music, skip forward or backward a track, and add the

album to your saved albums list in Spotify.

• We will display a track listing, along with the lengths of

each track, plus a list of albums from the same artist – the

latter will include the album name and image.

• We will provide an option to search for artists of a similar

name – the results will show their name and Spotify ID,

which we will use to get their albums as well.

This is only a small subset of what we can achieve using the Spotify

API – there is a whole stack of other things we can do, but space constraints

mean we can’t cover everything!

Hopefully this will give you a balanced mix of functions we can control

using our voice and a feel for how we can use the Spotify API in this

context; as a preview, you can see a screenshot of the completed demo in

Figure 8-1.

Chapter 8 projeCt: Finding and playing MusiC

235

Okay, let’s move on. I am sure you will be asking one question:

why Spotify, when we have a host of other services available that we

could use, such as Deezer, Google Play Music, or even Amazon Music?

It’s a good question, so let’s take a look at the reasons for choosing to

use Spotify.

Figure 8-1. A preview of our finished demo

Chapter 8 projeCt: Finding and playing MusiC

236

 Why Spotify?
When working with online music streaming services, we have a fairly

healthy list of options to choose from – some you might know from TV

advertising such as Spotify or Deezer, with others coming from established

companies who’ve branched out into this area, such as Amazon or Google

Play Music. For this chapter, I’ve elected to use Spotify, for several reasons:

• As with many services, you always have to sign up –

Spotify’s account requirements are minimal, and it is

very easy to set up a basic authentication system in

code (as we will see later in our demo).

• A great reason for using Spotify is that I’m already a

paid-up subscriber – granted there are other outlets

who offer a similar service, but it doesn’t make sense

to use them if you already use the market leader. They

offer a wide variety of music, although it’s not high

resolution – this limitation doesn’t matter though, as

this exercise is about remote controlling the service

with our voice, not what level of sound quality the

service offers!

• Online music streaming is developing into a healthy

market, with the likes of Deezer, Spotify, and Amazon

Music, but most of them had one thing in common – they

all seem to make it difficult to interact with each service’s

API using standard client-side technologies! The only

exception to this was Spotify – as you will see shortly, we’ll

be making use of a third-party wrapper library to help

with running our code, one of a limited number available

for Spotify. (Indeed, one service wouldn’t even let me log

into their API area…)

Chapter 8 projeCt: Finding and playing MusiC

237

Okay, let’s move on. Now that we’ve covered off which music service

we will use, we need to explore how we’re going to construct our demo.

We’ll be making use of a number of tools, in addition to Spotify and the

Speech APIs (naturally!), so let’s dive in and take a look at what we will be

using to construct our demo in more detail.

 Architecting our demo
For the purposes of building our demo, we’ll be making use of several

tools, in addition to Spotify and the Speech APIs. The ones I’ve elected to

use are as follows:

• Vue.js for the authorization skeleton code – I could use

tools such as React, but this adds complexity which

isn’t necessary. Vue.js keeps things nice and simple

and doesn’t require the use of server-side tools such as

Node.js by default, to show off the basics of operating

with Spotify. A good example of authorizing access

to Spotify is in the CodePen demo by Lee Martin at

https://codepen.io/leemartin/pen/EOxxYR – we’ll

be using this as the basis for our demo.

We will talk more about the authorization part of the process shortly.

• We could interact with Spotify’s API directly, but to

keep things simple, we will make use of a wrapper

library by José Perez, which is available from

https://github.com/JMPerez/spotify-web-api-js.

Chapter 8 projeCt: Finding and playing MusiC

https://codepen.io/leemartin/pen/EOxxYR
https://github.com/JMPerez/spotify-web-api-js

238

• jQuery – this is purely for convenience; in an ideal

world, we would refactor our code to use either Vue

or vanilla JavaScript! For transparency, we’ll be using

the latest version of jQuery which is 3.4.1 at the time of

writing. Other versions of jQuery can be used, although

you will need to test to ensure your code still works.

Okay, with our main tools in place, we can now start coding! But – I hear

you say – what’s this about authorizing? Yes, as with any API, we need to be

authorized users to access the service; the service provider needs a way to

track usage and maintain a decent level of service for all users. Although this

does not affect our use of the Speech APIs, it’s nevertheless a key part of our

demo, so let’s dive in and take a quick look at our options in more detail.

 Authorizing our demo
When working with the Spotify API, a key critical part of our app will be the

authorization process between us and Spotify; this is to allow registered

access to the APIs so we can stream music.

This is a two-part process. The first, where we register the app with

Spotify, we will cover later; for now, let’s assume this has taken place and

take a look at the various ways in which authorization can happen when

working with Spotify.

 Choosing a method
Assuming we’ve registered our app with Spotify, there are three ways we

can be authorized to use the Spotify API. They are as follows:

• Authorize ourselves as a user, which can be periodically

refreshed – use the Authorization Code method.

• Set up temporary authorization for a user – use the

Implicit Grant method.

Chapter 8 projeCt: Finding and playing MusiC

239

• Set up authorization for an app, which can be

periodically refreshed – use the Client Credentials
Flow method.

We can see how these compare in Table 8-1.

Table 8-1. Methods of authorizing access to Spotify API

Flow Access user
resources

Requires secret key
(server side)

Access token
refresh

authorization Code yes yes yes

Client Credentials no yes no

implicit grant yes no no

Source: Spotify Developer Portal

For the purposes of our demo, we will use the Implicit Grant Flow

option – this is designed for clients that are written entirely in JavaScript and

do not require the use of server-side code to operate. There is indeed a server-

side option available in the form of spotify-web-api-node, but to show off

how the Speech APIs work, running it server side just adds an extra layer of

complexity that isn’t needed. After all, why complicate matters, right?

 The implications of using our chosen method
For our demo, we’ve chosen to use the Implicit Grant Flow method for

authorizing access – this standard was created as RFC-6749 by the Internet

Engineering Task Force, or IEFT. Making use of this method is the best

choice in our case, for several reasons:

Chapter 8 projeCt: Finding and playing MusiC

240

• Implicit Grant Flow is for clients that are implemented

entirely using JavaScript and running in the resource

owner’s browser.

• You do not need any server-side code to use it – this

removes the need for complex server-side tools, such as

Node.js.

• Rate limits for requests are improved, but there is no

refresh token provided.

you can see a more in-depth discussion on how this method works
on the ietF web site, at https://tools.ietf.org/html/
rfc6749#section-4.2.

What does this mean for us? We get direct access to the Spotify

Accounts service, with an access token supplied by the API that

will start with something akin to https://accounts.spotify.com/

authorize.

The whole process is carried out client side and does not involve

secret keys, but the access tokens are short-lived and need to be refreshed

manually with no option available to extend them when they have expired.

The full request will include parameters in the query string, which we can

see listed in Table 8-2 (and later in our demo).

Chapter 8 projeCt: Finding and playing MusiC

https://tools.ietf.org/html/rfc6749#section-4.2
https://tools.ietf.org/html/rfc6749#section-4.2
https://accounts.spotify.com/authorize
https://accounts.spotify.com/authorize

241

The best way to understand how it all fits together, short of seeing it

operating, is to see it as a flow chart – we can see how the flow operates in

Figure 8-2.

Table 8-2. The various properties required for Implicit Flow

authorization

Query parameter Value

client_id Required. the client id provided to you by spotify at the point

of registration.

response_type Required. set it to “token.”

redirect_uri Required. the registered uri to redirect to after the user

grants/denies permission.

state Optional, but strongly recommended.
the state can be useful for correlating requests and

responses – using a value can give extra assurance that a

connection is a genuine request.

scope Optional. a space-separated list of scopes.

show_dialog Optional. Forces the user to approve the app again, if it has

already been approved.

Source: Spotify Developer Portal

Chapter 8 projeCt: Finding and playing MusiC

242

It’s important to understand though that choosing a method will come

with some constraints – after all, it’s unlikely we get anything for free,

without something that might affect how we do things!

Fortunately, the constraints are not too severe, and the effects of them

could be reduced if we decided to use one of the other authorization

methods available from Spotify. That’s another story though. In the

meantime, let’s take a look at how the constraints might affect our demo in

more detail.

 Constraints of using this method
Although our chosen method keeps things simple and is the best fit for our

needs, there are still some constraints that we need to be aware of, which

means that we can’t completely control everything by voice. Let’s take a

look at what they are:

Figure 8-2. The authorization process for our demo
Source: Spotify Developer Portal

Chapter 8 projeCt: Finding and playing MusiC

243

• Before we run our demo, we will need to fire up Spotify

and run a song for a few seconds (it’s something we have

to do periodically). If we don’t run Spotify at all, you will

get errors appear in console, and albums will not play.

• We need to use the browser version of Spotify for this

demo to work; if you try using the desktop app, you will

find the two do not interact with each other, and you

may also find a different album playing in the desktop

app that doesn’t relate to the one playing in your demo!

• When running the authorization part of the demo,

we have to click the Accept button for Spotify to allow

access. Unfortunately, this isn’t accessible via speech

from within our demo, hence why we can’t completely

control things using our voice!

Okay, now that we’ve covered off the basics of authorizing access to

Spotify, it really is time to start developing code. I know it might seem like

a long wait before we do so, but the Spotify API isn’t as easy as it should be;

we’ve had to cover some important points around how to get access to the API.

Now that we’ve covered this, we can get stuck into setting up our app;

the first task is to set up an integration so that Spotify recognizes calls from

our app as genuine and provides the appropriate content.

 Setting up prerequisites
When working with APIs, we frequently have to set up some form of

account or integration – it’s a necessary evil, but nevertheless important so

that the service provider can manage demand and keep access secure for

registered users.

It’s no different for using Spotify – the first stage in our demo is to set

up an integration, so let’s dive in and take a look at the steps required to

create the integration for our app.

Chapter 8 projeCt: Finding and playing MusiC

244

DEALING WITH PREREQUISITES

to set up the integration, follow these steps:

 1. We’ll begin by downloading a copy of the code download that

accompanies this book – go ahead and save the spotify

folder into our project area. this will contain the relevant styles

and Vue.js and jQuery libraries in place, ready for us to use.

 2. next, we need to sign into spotify’s developer dashboard area at

https://developer.spotify.com/dashboard/ – for this,

you will need to create a free account, or you can use your existing

one if you are already an existing subscriber to the service.

 3. once logged in, click Create a Client id – you will see a modal

appear, similar to the (partial) screenshot shown in Figure 8-3.

Figure 8-3. Create a Client ID modal on display

Chapter 8 projeCt: Finding and playing MusiC

https://developer.spotify.com/dashboard/

245

 4. go ahead and fill out the details requested (indicated by the red

star) – you can use the following as a guide to help you through

the wizard:

• are you developing a commercial integration? – No

(We are working in a purely developmental capacity at present, but
if you do decide to go commercial, then please make sure you set
up an integration accordingly. It’s important to note that you can’t
edit this option once the integration has been enabled).

• i understand that this app is not for commercial use – No

• i understand that i cannot migrate… – No

• i understand and agree with…. – No

 5. hit submit. at this point, the details will be displayed, and you

will be presented with your app’s dashboard.

 6. you will see a link marked shoW Client seCret, along with

your client id. Click the link, and then make a note of both ids,

as we will use both later in our demo.

We’re now ready to start developing code! Before we do so, there are a

couple of things to note:

• We’ll make use of a Spotify icon from the Flaticon web

site – this is purely for creating a favicon for our site.

The icon I’ve used is available from https://www.

flaticon.com/free-icon/spotify-logo_49097.

• The Favicon site at https://favicon.io/favicon-

converter/ is very handy for setting up the code needed

to display favicons correctly – we’ll be incorporating

code generated from this site into our app.

Chapter 8 projeCt: Finding and playing MusiC

https://www.flaticon.com/free-icon/spotify-logo_49097
https://www.flaticon.com/free-icon/spotify-logo_49097
https://favicon.io/favicon-converter/
https://favicon.io/favicon-converter/

246

Adding in a favicon is entirely voluntary; you can of course decide not

to use it, and it won’t affect how your demo runs! I’ve done it purely to stop

our app from throwing an error about not finding a suitable icon.

you may find that if you test code after each demo, not all of it works.
don’t be alarmed; this is to be expected! We’re covering a lot of code,
so we need to do it in sections – it will all work out at the end of the
final demo.

At this stage, with all of the prerequisites in place, we are now ready to

start writing code. There is a fair amount of code to go through, so we will

do it in stages – the first task is to set up the basic authorization framework,

so that we can begin to add in code to interact with Spotify’s API.

 Creating the framework
We really are now at a stage where we can write some code! With our app

integration all set up and ready to be used, we can turn our attention to

setting up code for our app. There is a fair amount of code to work through

over the course of this project, so I’ve split it into a three-stage process; the

first stage takes care of the basic authorization process.

To help with not reinventing the wheel, I will make use of a CodePen

demo by Lee Martin (you can see the original at https://codepen.io/

leemartin/pen/EOxxYR?editors=1010). This uses the Vue.js framework to

lay out the code. Don’t worry if you’re not familiar with this framework – at

a basic level, it maintains a split between markup and JavaScript code. We

will go through each part in detail after the exercise.

Chapter 8 projeCt: Finding and playing MusiC

https://codepen.io/leemartin/pen/EOxxYR?editors=1010
https://codepen.io/leemartin/pen/EOxxYR?editors=1010

247

SETTING UP OUR SKELETON CODE

to get our authorization framework set up and ready to rock and roll, go ahead

with these steps:

 1. We’ll begin by cracking open a copy of index.html and then

scrolling down to (or looking for) the comment marked

<!—INSERT CODE HERE -->.

 2. We have a fair amount of code to add, so we will do this in

stages – first, remove the comment, and then add a couple of

blank lines.

 3. next, go ahead and insert this block – this will take care of the

markup around our speech facility:

<main id="app">

 <h2>Introducing HTML5 Speech API:
Controlling

Spotify by Voice</h2>

 <template v-if="me">

 <div id="speech">

 <button>

 <i class="fa fa-microphone"></i> Click and talk

to me!

 </button>

 <p class="output">You said:
<strong

class="output_result"></p>

 Spoken voice: US English

 <p>Responses:</p>

 <div class="response">

 </div>

 </div>

Chapter 8 projeCt: Finding and playing MusiC

248

 4. We have a few more blocks to cover – the next one we need to add

will look after the display of our playing album, by providing details

such as an image, artist, and track count. leave a line blank after

the previous block, and then add in the following code:

<div id="currentalbum">

</div>

 5. the next block isn’t needed for the authorization process, but

it’s easier to add it in now – this one will set up the buttons

needed to control the music playing. go ahead and add in the

following code, leaving a blank line after the previous block:

 <button @click="playmusic"><i class="fa

fa-microphone"></i> Play music</button>

 <button @click="pausemusic"><i class="fa

fa-microphone"></i> Pause music</button>

 <button @click="playnexttrack"><i class="fa

fa-microphone"></i> Go forward 1 track</button>

 <button @click="playprevioustrack"><i class="fa

fa- microphone"></i> Go back 1 track</button>

 <button @click="addtosavedalbums"><i class="fa

fa- microphone"></i> Add to saved albums</button>

Chapter 8 projeCt: Finding and playing MusiC

249

 6. We’re making good progress. this next section sets up a

placeholder for the track listing, for the album we are playing

through our demo. go ahead and add in the following lines of

code, leaving a blank line after the previous block first:

<div id="albumlist">

 <p>Track listing:</p>

</div>

 7. this next section looks after the display of other albums by the

same artist – leave a blank line after the previous block, and

then drop in this code:

<div id="otheralbums">

 Other albums by Artist:<button

@click="getalbumsbyartist"><i class="fa fa-microphone">

</i> Get Albums</button>

</div>

 8. We also have a section to display other artists of a similar

name – for this, add in the following code, after the

previous block:

<div id="artistlisting">

 Search for Artist: <input v-model="searchartist">

<button @click="searchartistsbyname"><i class="fa

fa-microphone"></i> Search</button>

 Chosen artist: {{searchartist}}

 <div id="artistlist"></div>

</div>

Chapter 8 projeCt: Finding and playing MusiC

250

 9. We’re almost done with the markup. there are two more

sections left to add in: a hidden info block that confirms you are

logged in and the closing code for our Vue template. go ahead

and add in the following code after the previous step, leaving a

blank line in between:

 <div id="info">{{ me }}</div>

 </template>

 <template v-else>

 <button @click="login">Login with Spotify</button>

 </template>

</main>

 10. at this point, save the file – leave it open for now. We’ll take a

quick breather, but will continue with the code shortly.

We now have our markup in place, ready for use – it won’t do a

great deal though, as we’ve yet to add in the scripting code to make it

operational.

We will add this in shortly. Feel free to go get a cup of coffee or drink

and take a breather though, as we still have plenty of code to add in!

Assuming you’re good to go, let’s continue with the next part of our demo,

to add in that authorization code.

 Getting authorization from Spotify
In our next demo, we should start to see things happen – this is where

we add in the code to initiate a request for authorization and hopefully

get it approved! Okay, that sounds more complex than it really is, as it all

happens in the background, with only a single click of a button needed

from us. To see what I mean, let’s add in the code as part of our next demo.

Chapter 8 projeCt: Finding and playing MusiC

251

MAKING OUR AUTHENTICATION PROCESS OPERATIONAL

to get our demo to authorize access with spotify, go ahead with these steps:

 1. the first task in this demo is to add in a couple of blank lines

after the closing </main> tag from the previous demo and then

drop in this code – this will give us the basic Vue object that we

will use to initiate authorization to spotify:

<script>

 const app = new Vue({

 el: '#app',

 data() {

 return {

 client_id: 'bf253330696448f696dc45889f3fd61c',

 scopes: 'user-top-read playlist-read-

collaborative playlist-read-collaborative

playlist-modify-public playlist- read- private

playlist-modify-private streaming app-remote-

control user-modify-playback-state user-read-

currently-playing user-read-playback-state user-

library-modify',

 redirect_uri: 'https://speech/spotify',

 me: null,

 albumname: 'Not listed',

 searchartist: null,

 createplist: null

 }

 },

 methods: {

 <!—ADD IN ADDITIONAL METHODS HERE -->

 }

 })

</script>

Chapter 8 projeCt: Finding and playing MusiC

252

 2. We need to add in a few more configuration functions – the

first is the actual call to spotify to request authorization. go

ahead and add in the following code inside the methods object,

replacing the comment marked <!-- ADD IN ADDITIONAL

METHODS HERE -->:

login() {

 let popup = window.open(`https://accounts.

spotify.com/authorize?client_id=${this.client_

id}&response_type=token&redirect_uri=${this.redirect_

uri}&scope=${this.scopes}&show_dialog=true`, 'Login

with Spotify', 'width=600,height=800')

 window.spotifyCallback = (payload) => {

 popup.close()

 fetch('https://api.spotify.com/v1/me', {

 headers: {

 'Authorization': `Bearer ${payload}`

 }

 }).then(response => {

 return response.json()

 }).then(data => {

 this.me = data

 })

 spotifyApi = new SpotifyWebApi({

 clientId: '<ADD IN CLIENT ID HERE>',

 clientSecret: '<ADD IN CLIENT SECRET HERE>'

 });

 spotifyApi.setAccessToken(payload);

 }

 },

Chapter 8 projeCt: Finding and playing MusiC

253

you will see the presence of a few lines of code that relate to the clientid and

clientsecret values; there is a reason they are needed here, even though they are

not used for the authorization process. We’ll go through the significance of this

after this demo.

 3. We have one more object to add in – this triggers the call to

initiate the request to spotify. For this, add in the following code

immediately after the closing }, from the previous block, and

before the closing }) of our Vue object:

mounted() {

 this.token = window.location.hash.substr(1).

 split('&')[0].split("=")[1]

 if (this.token) {

 // alert(this.token)

 window.opener.spotifyCallback(this.token)

 }

 }

 4. go ahead and save the file, but leave it open (or minimized) –

we’re now ready to test our work! For this, browse to

https://speech/spotify/. if all is well, we should see the

initial login button displayed, as indicated in Figure 8-4.

Figure 8-4. The initial login button to Spotify from our demo

Chapter 8 projeCt: Finding and playing MusiC

254

if we click the login with spotify button, we should see a popup window

appear, requesting access for our demo to use the spotify api. a (partial)

screenshot of this request is displayed in Figure 8-5.

Figure 8-5. A (partial) request to authorize our demo

Chapter 8 projeCt: Finding and playing MusiC

255

 Breaking apart the code
Over the course of the last two demos, we’ve set up the basic framework

needed to authorize access to Spotify’s API; this has exposed some useful

pointers, so let’s take a look at the code in more detail to understand how it

all fits together.

The first part of the first demo is straightforward; we set up all of our

markup, including that required to operate the speech facility, later in

the chapter. The only key thing to note is the use of the @ signs in step 5

of that demo; these are calls to functions within the Vue object we create

in the second demo (they operate in a similar way to onclick="...." in

plain JavaScript). We also make use of double curly brackets – these are

just placeholders, which are substituted for real values by the Handlebars

library that is bundled in with Vue.

The real crux of these two demos comes in the second part – for the

uninitiated, Vue works on the principle of creating (and initializing an

instance of) a configuration object. We click off by defining the app const

as a new instance of Vue, into which we pass a target element ("#app"); we

then define a number of values in the data object – respectively our client

ID, permitted scopes, a redirect URL for authorization, and some other

placeholders used for our demo.

Chapter 8 projeCt: Finding and playing MusiC

256

Next up, we create a method object, into which we set up the login()

object (or function); this defines a popup variable that contains the URL

we use to request access. Once the Vue instance is mounted() in the

demo, this initiates a callback which calls the login() object. This fires

the request to Spotify, which is then processed accordingly. Assuming it

is successful, we get a response back – this is hidden in the demo, as we

don’t need to display it all of the time. At the same time, we create a new

instance of the spotify-web-api library, into which we define our clientID

and clientSecret values, ready for us to start using Spotify.

 Streaming content from Spotify
With our authorization process now operational, it’s time to add in

the code to stream content from Spotify. For this, we’ll make use of the

spotify-web-api-js wrapper library by José Perez; this wraps the relevant

calls to each of the Spotify endpoints using a promise-based syntax.

Spoiler alert this is a lengthy demo. Feel free to pause at any time
if you need a break!

To give you a reminder of how it will look once we’re done, we can see

a partial screenshot of our completed app in Figure 8-6, once we’ve clicked

Log into Spotify and OK to allow authorization.

Chapter 8 projeCt: Finding and playing MusiC

257

Figure 8-6. Previewing our Spotify demo…

Okay, let’s make a start on our code.

MAKING USE OF THE SPOTIFY API

to stream content from spotify into our demo, follow these steps:

 1. revert back to the index.html file we had open in the previous

exercise, then scroll down to the opening <script> tag, and add

in this line of code immediately below it, as indicated:

Chapter 8 projeCt: Finding and playing MusiC

258

 <script>

 var spotifyApi, albumIDplaying, artistimage;

 2. We need to add in a helper function to convert time from

milliseconds to something more sensible. For this, add in this

code below the variable declarations from the previous step,

leaving a blank line in between:

 function msToMinAndSec(millis) {

 var minutes = Math.floor(millis / 60000);

 var seconds = ((millis % 60000) / 1000).toFixed(0);

 return minutes + ":" + (seconds < 10 ? '0' : ") +

seconds;

 }

 3. next, take a look back at the login() object we created. you

should see something akin to this:

 spotifyApi = new SpotifyWebApi({

 clientId: '<ADD IN CLIENT ID HERE>',

 clientSecret: '<ADD IN CLIENT SECRET HERE>'

 });

 spotifyApi.setAccessToken(payload);

 }

},

 4. We need to add in both the client id and client secretsvalues

from our spotify account; for this, go ahead and replace the

comments with your client and secret ids that you created

earlier in this chapter.

 5. the next task is to start adding in the functions that operate

the various features within our demo. the first is to add in

something to allow us to do the most important part: play

music! For this, we have a substantial function to add in; the

first part of it takes care of getting the current state from

spotify and displaying album details on screen:

Chapter 8 projeCt: Finding and playing MusiC

259

playmusic() {

// get current playing album

spotifyApi.getMyCurrentPlaybackState()

.then(function(data) {

 spotifyApi.play(data);

 sessionStorage.setItem("chosenalbum", data.item.album.id);

 sessionStorage.setItem("chosenartist", data.item.

artists[0] .id);

 var albumtype = data.item.album.album_type;

 $(".year").html(data.item.album.release_date.

substring(0,4));

 $(".albumtype").html(albumtype.charAt(0).

toUpperCase() + albumtype.slice(1));

 $(".trackcount").html(data.item.album.total_tracks +

" tracks");

 $(".albumID").html(data.item.album.id);

 $(".artistID").html(data.item.artists[0].id);

 $("#currentalbum > span.albumname").html(data.item.

album.name);

 $("#currentalbum > span.albumartist").html(data.

item.artists[0].name);

 $("#currentalbum > span.albumimage > img").

attr("src", data.item.album.images[1].url);

 }, function(err) {

 console.error(err);

 });

 6. next, leave a blank line – we now need to add in the closing

half of the play() function. For this, drop in the following code,

which looks after the display of track details and times on screen:

Chapter 8 projeCt: Finding and playing MusiC

260

 // get album tracks

 spotifyApi.getAlbumTracks(sessionStorage.getItem

("chosenalbum"))

 .then(function(data) {

 var tracklength;

 $("#albumlist > ul > li").remove();

 data.items.map(function(item) {

 spotifyApi.getAudioFeaturesForTrack(item.id)

 .then(function(response) {

 tracklength = response.duration_ms;

 $("#albumlist > ul").append(`${item.

track_number}: ${item.name} -

${msToMinAndSec(tracklength)}`);

 });

 });

 }, function(err) {

 console.error(err);

 });

 },

 7. the next three objects we need to add in will look tiny in

comparison! the first of the three is the function needed

to allow us to pause music – go ahead and add this in

immediately below the closing } of the function from step 6:

pausemusic() {

 // stop music

 spotifyApi.pause();

},

 8. second, in a similar vein, we need to add in something that

will allow us to advance a track – go ahead and add this in

immediately below the pausemusic() function:

Chapter 8 projeCt: Finding and playing MusiC

261

playnexttrack() {

 // play next track

 spotifyApi.skipToNext();

},

 9. For the third of these small functions, add in this code immediately

below the previous block, to allow us to go back a track:

 playprevioustrack() {

 // play previous track

 spotifyApi.skipToPrevious();

 },

 10. We’re making good progress, although there is still a good

amount of code to add in. the next function will allow us

to search for artists by name. go ahead and add in the

following code, immediately after the closing }, from the

playprevioustrack() object:

searchartistsbyname() {

 // search artists by name

var artistquery = $("#artistlisting > input").val();

spotifyApi.searchArtists(artistquery)

 .then(function(data) {

 data.artists.items.map(function(item) {

 if (item.images.length == 0) {

 artistimage = "https://speech/spotify/img/noimage.png";

 } else {

 artistimage = item.images[2].url

 }

 $("#artistlist > ul").append(`<img src

="${artistimage}">${item.name} - ${item.

id}

Chapter 8 projeCt: Finding and playing MusiC

262

`);

 });

}, function(err) {

 console.error(err);

});

},

 11. the next function we need to add in is to retrieve a list of

albums by our chosen artist – this is taken care of by the

following code, which we need to add in immediately below the

previous object from step 10:

getalbumsbyartist() {

 // get albums by a certain artist

 var selectedartist = sessionStorage.

getItem("chosenartist");

 spotifyApi.getArtistAlbums(selectedartist)

 .then(function(data) {

 data.items.map(function(item) {

 $("#otheralbums > ul").append(`

${item.name}`);

 });

 }, function(err) {

 console.error(err);

 });

},

 12. We’re almost done. the last function to add in will take care

of adding a chosen album to our saved albums in spotify.

this is a short function in comparison to others; go ahead

and add in the following code below the closing } of the

getalbumsbyartist() object:

Chapter 8 projeCt: Finding and playing MusiC

263

 addtosavedalbums() {

 // add to saved albums

 var getalbum = $(".albumID").text();

 spotifyApi.addToMySavedAlbums([getalbum]);

 },

},

 13. this last block of code is admittedly something of a cheat – we

use it to help set the spotify id of our chosen artist into session

storage. scroll down to the closing </script> tag, then leave

a line, and add in the following code:

<script>

 $(document).ready(function() {

 $("body").on("click", "#artistlist ul li", function() {

 var chosenartist = $(this).text();

 var chosen = chosenartist.split(" ");

 sessionStorage.setItem("chosenartist", chosen.

pop());

 });

 });

</script>

 14. at this point we can now save our work – go ahead and take a

breather! this might seem a lot of code, but i promise you we’ve

added in the bulk of our code, and that the next part (controlling

our demo by voice) will be much shorter in comparison.

 15. When you’re ready, let’s preview the results of our work – for

this, browse to https://speech/spotify/; if all is good, we

should see something akin to the screenshot shown at the start

of this mammoth exercise.

at this point, we can leave the index.html file open, but minimized – we will be

revisiting it in the final part of this project.

Chapter 8 projeCt: Finding and playing MusiC

264

I must offer congratulations if you managed to get to this point with a

working demo – that last exercise was certainly a monster! While it’s nice

to see that monster begin to resemble something operational, it’s a good

opportunity to go through the code in more detail; it shows off a few useful

points which are worth more attention.

 Understanding the code
We kicked off by setting up a few variables that are used in our code, such

as a new placeholder for our SpotifyAPI wrapper instance and album

image. We then added in a helper function to convert the time returned

by Spotify for each track into something more useful, before initiating that

instance of Spotify with our client details, using the wrapper library.

Next up, we added in a host of different event handlers that make use

of the wrapper library; although they all work in different ways, most work

on the same principle of using a promise-based syntax. A good example is

the playmusic() function, which looks like this:

playmusic() { // get current playing album

 spotifyApi.getMyCurrentPlaybackState()

 .then(function(data) {

 spotifyApi.play(data);

 sessionStorage.setItem("chosenalbum", data.item.album.id);

 sessionStorage.setItem("chosenartist", data.item.artists

[0].id);

 $(".year").html(data.item.album.release_date .substring(0,4));

 $(".albumtype").html(data.item.album.album_type);

 $(".trackcount").html(data.item.album.total_tracks + "

tracks");

 $(".albumID").html(data.item.album.id);

 ...

Chapter 8 projeCt: Finding and playing MusiC

265

 albumIDplaying = data.item.album.id; sessionStorage.

setItem("chosenartist", data.item.artists[0].id);

 }, function(err) {

 console.error(err);

 });

This function is triggered when we hit the play button in our demo –

we first get the current playback state from Spotify (hence why we need

to run the web client for a few seconds!). We then pushed values for the

current artist and album into session storage, before initiating play and

piping out various values such as album image, a count of the number

of tracks, and names for each track. The use of session storage is a little

bit of a hack, but necessary. It forces the spotifyApi library to get the

right ID for the album at the right time; otherwise, we may end up with

it trying to pass a null value, and consequently get a 400 error (or no

listing)!

The other functions work in a similar manner (with some exceptions) –

each using a promise-based syntax to request a JSON object with data from

Spotify, before pulling out the relevant data and displaying it on screen at

the appropriate point.

 Talking to Spotify
At last, we can get our app to recognize our voice! Yes, it might seem like

we’ve covered a lot before we can get to the real crux of our project (and

the point of this book). However, as mentioned before, the Spotify API isn’t

the easiest to work with; Jose’s library is a great step toward abstracting a

lot of the code away, but it still means we have to add a fair amount into

our project.

Chapter 8 projeCt: Finding and playing MusiC

266

Figure 8-7. Our Spotify demo, enabled for voice control

With this in mind, let’s dive in and take a look at the code required to

enable our app to recognize verbal commands in more detail.

TALKING TO OUR DEMO

to add speech capabilities, follow these steps:

 1. We’ll begin by reverting back to the index.html we had open

from the previous demo. scroll down to the second <script>

block at the bottom, and then add a blank line before the

closing }); of the DOM.ready() function.

Thankfully though, most of the code you are about to see should be

reasonably familiar by now; we’ve used much of it from previous demos,

which is good for reusability. The only real change is in the result()

handler where we tell our demo what to do when it recognizes valid

speech. We can see a preview of how things will look in Figure 8-7, once

we’ve completed the changes.

Chapter 8 projeCt: Finding and playing MusiC

267

 2. We now need to add in the code that allows our demo to

recognize commands by voice – we have a good amount of

code to add in, so let’s do it block by block. the first block goes

in below the blank line we just added, which will declare a

number of variables and properties for the speech recognition

api to operate:

const output = $(".output_result");

 navigator.mediaDevices.getUserMedia({ audio: true

}).then(function(stream) {

 const SpeechRecognition = window.SpeechRecognition ||

window.webkitSpeechRecognition;

 const recognition = new SpeechRecognition();

 recognition.interimResults = false;

 recognition.maxAlternatives = 1;

 recognition.continuous = true;

 3. We have a series of event listeners to add in – the first will trigger

the speech recognition service once we click the Click and talk

to me! button. For each event handler, leave a blank line after the

previous one, and then add in the code block in turn:

 $("body").on("click", "#speech > button", function() {

 let recogLang = "en-US";

 recognition.lang = recogLang.value;

 recognition.start();

});

 4. the next event handler is one we’ve used in previous demos –

this is triggered when the demo detects that the microphone

is live and sounds have been detected, but not necessarily

recognized as speech:

Chapter 8 projeCt: Finding and playing MusiC

268

recognition.addEventListener("speechstart", () => {

 $(".output_log").text("Speech has been detected.");

});

 5. We’ve seen the start of this next handler before – this

determines if anything spoken is recognizable as speech and

acts on it if this is the case:

recognition.addEventListener("result", (e) => {

 $(".output_log").html("Result has been detected.");

 let last = e.results.length - 1;

 let text = e.results[last][0].transcript;

 $(".output_result").html(text);

 /* Play music */

 if (text.indexOf("play music") != -1) {

 $("#app > button:nth-child(4)").trigger("click");

 }

 /* Pause music */

 if (text.indexOf("pause music") != -1) {

 $("#app > button:nth-child(5)").trigger("click");

 }

 /* Go forward */

 if (text.indexOf("go forward") != -1) {

 $("#app > button:nth-child(7)").trigger("click");

 }

 /* Go back */

 if (text.indexOf("go back") != -1) {

 $("#app > button:nth-child(8)").trigger("click");

 }

Chapter 8 projeCt: Finding and playing MusiC

269

 /* Save album */

 if (text.indexOf("save album") != -1) {

 $("#app > button:nth-child(9)").trigger("click");

 }

 /* Get other albums */

 if (text.indexOf("get other albums") != -1) {

 $("#otheralbums > button").trigger("click");

 }

 /* Search artist */

 if (text.indexOf("search artist") != -1) {

 $("#artistlist > input").val("enigma");

 $("#artistlist > button").trigger("click");

 }

 $(".output_log").html("Confidence: " + (e.results[0][0].

confidence * 100).toFixed(2) + "%");

});

 6. We have three more event handlers to add in – this next one

detects if we’ve stopped speaking, with the onspeechend

handler being triggered if this is the case:

recognition.addEventListener("speechend", () => {

 recognition.stop();

});

recognition.onspeechend = function() {

 $(".output_log").html("You were quiet for a while so

voice recognition turned itself off.");

 //console.log("off");

};

Chapter 8 projeCt: Finding and playing MusiC

270

 7. this last event handler takes care of basic error handling – in

a production environment, this would be more in-depth, but

for our purposes, it’s enough to simply render the raw error

message in the console:

 recognition.addEventListener("error", e => {

 if (e.error == "no-speech") {

 $(".output_result").html("Error: no speech

detected");

 } else {

 $(".output_result").html("Error: " + e.error);

 }

 });

}).catch(function(err){

 console.log(err);

});

 8. We’re done with editing the file – go ahead and save it. We

can now preview the results of our work; for this, browse to

https://speech/spotify/. if all is well, we should first see

something akin to the screenshot shown in Figure 8-7 at the

start of this exercise.

Over the course of this last demo, we’ve revisited some of the functions

that we saw in our first project earlier in this book; it shows how easy it

is to add in speech capabilities and that much of the code can be reused

with little difficulty. As with many projects, it’s the results handler that is

frequently changed; with that in mind, let’s take a look at the code in more

detail, to see how it all fitted together.

Chapter 8 projeCt: Finding and playing MusiC

271

 Exploring the code in detail
A lot of the code we’ve worked on in this demo should by now begin to look

a little familiar – the beauty of the API is such that we can set up a number of

stock handlers and reuse these throughout our projects. Granted some (such

as the results handler – more anon) might need to change, but many such as

onspeechend can remain the same across different projects. With this in mind,

let’s take a look at the code in more detail.

We kicked off by declaring a number of variables and properties – these

include caching .output_result, defining an instance of the Speech

Recognition API as SpeechRecognition, and setting the interimResults,

maxAlternatives, and continuous properties for the API.

We then moved onto setting up event handlers to respond to the API – the

first allows us to trigger the API using en-US as the default language. Notice

that this isn’t using a standard jQuery syntax for event handlers – we have

to defer it, so that it can be assigned once the button is present on the page

(it’s not available until we’ve logged in).

The next handler we added in is for the speechstart event – this was

lifted directly from an earlier project, which shows how easy it is to reuse

code when it comes to working with the Speech APIs. We then moved onto

a rather lengthy handler for the result event – it looks long, but most of this is

defining what should happen when the API recognizes certain phrases. This

handler transcribes the contents of the results property, before outputting it

on screen and determining if any of the actions provided can be executed.

We then added in three more event handlers, which were lifted from

previous projects: two to determine if we’ve stopped speaking (speechend

and onspeechend) and the last to provide rudimentary error logging

(error). It’s important to note that the two speechend handlers work in

slightly different ways – the first determines if we’ve stopped talking, and

the second controls what happens when we’ve stopped talking and can

therefore switch off the API.

Chapter 8 projeCt: Finding and playing MusiC

272

 Taking things further
Hopefully by now, you will have had a chance to play with the demo –

granted it’s a little rough and ready in places, but we should bear in mind

that this chapter isn’t about using Spotify, but how we can set the Speech

APIs to interact with Spotify content!

Nevertheless, there are a few things we could do to improve the

interface and start to add a little more polish to our app:

• One thing you may have noticed is that the sort order

for the track listing doesn’t appear to be right. There is

a reason for this; it has to do with the insertion order

of each item into the element that contains the

listing, once it has been retrieved from the API. To work

around this, we could push the items into an object

array and then sort them using the .sort method before

rendering the new order on screen. (Just to confirm, the

track IDs are correct – it’s just the order that’s not!)

• For the purists among you, you may have spotted that

the track times are slightly out for some of the tracks;

this is very likely due to how we are converting the

original millisecond value to something more human-

readable and recognizable. This may not be a real issue,

but it might be worth experimenting with the function

to see if this can be improved.

• Cast your mind back to earlier in the book – in a

number of projects, we implemented support for an

additional language (French). There should be no

reason why we can’t add the same support here; we

would need to update the UI to reflect the changes,

as well as adding the right trigger commands for each

feature, such as playing music.

Chapter 8 projeCt: Finding and playing MusiC

273

• One area which is sorely lacking in this demo is any

form of feedback from the app – we can see what

commands we issue verbally, but how about using the

Speech Synthesis API to respond with confirmation

that an action has taken place?

• The list of albums returned can be rather large; this is

one area we could definitely improve on! Our demo

shows the first 20 items returned from the API, but we

should look at perhaps limiting this to the first five (?),

with an option to show an extended list if desired.

• We’ve implemented the navigator.mediaDevices.

getUserMedia method to initiate access to the

microphone (which we used back in Chapter 1), but at

present the Turn off button is not operational. Ideally,

we should provide an option to turn off the speech

facility, but this will need a refactoring of the code as

the button won’t initially be visible.

This should give you a flavor of where we could go and a few ideas to

get you started. There are plenty more options we can use in José’s wrapper

library, so I would recommend reading through both the documentation

from his site and from the Spotify Developer Portal – there is plenty to help

you develop your app into something that could become a voice-enabled

production solution at some point in the future.

 Summary
Adding speech facilities to any application opens up a world of

possibilities, particularly for those of us who are less able – or perhaps

just lazy! Over the course of this chapter, we’ve worked on adding speech

capabilities to a project that uses the Spotify API; let’s take a moment to

review what we’ve covered in this chapter.

Chapter 8 projeCt: Finding and playing MusiC

274

We kicked off by setting the background to our project, before

exploring the question of why we chose Spotify as our API provider. We

then moved onto a quick discussion around how we would architect our

project and the subject of getting access to the API authorized by Spotify

(and what it would mean for our project).

We then worked through setting up the basic authentication process,

having first sorted out a few prerequisites; we then turned our attention

to adding in the code to allow us to stream content from Spotify. Last

but by no means least, we then added in the code to allow us to interact

verbally with Spotify, before exploring some ideas to help get us started

on developing our project further into something that could be used in a

production environment.

Okay, take a breather, folks, as we have another big project coming your way!

One can’t fail to notice how Internet shopping has really taken off over the last

few years; more and more people are using devices to shop online, where they

don’t necessarily need to see the results on screen. One way to help with this is

to add in speech capabilities during the checkout process – stay with me, as I

show you how we can do so, in the next chapter.

Chapter 8 projeCt: Finding and playing MusiC

275© Alex Libby 2020
A. Libby, Introducing the HTML5 Web Speech API,
https://doi.org/10.1007/978-1-4842-5735-7_9

CHAPTER 9

Project: Automating
the Purchase Process
We’re almost at the end of the book, but we have one more project in store

for us! I’m sure you’ve spent hours trying to find a particular product,

then added it to a basket, and gone through a good handful of screens to

complete checkout, right? It’s a real pain with more complex baskets. What

if we could automate part of the process, using the power of our voice?

With the power of the Speech APIs, we should be able to verbally ask

the site to find and add products to a basket and then check out using the

Payment Request API – all without touching a single keyboard. Sound

impossible? Over the course of the chapter, I will show you a good chunk

of this idea may just be reality now. We’ll go through the various steps

required to add voice capabilities to the core part of the process, so you can

see how much time and effort we can save our customers.

 Setting the scene
Before we delve into the specifics of how we might achieve such a project,

I want to answer one question that I am sure will be on the lips of at least

some of you: why would we do something like this? Well, there are two good

reasons, if not three: Amazon (or Google – depending on your affinity),

accessibility, and…well, why not? Before you all think I’ve completely lost

the plot, let me explain what I mean by that somewhat cryptic answer.

276

The first, Amazon, or Google for that matter, is because of the

invention of the smart assistant. We touched on the subject earlier in

the book, of how more and more searches are being achieved without a

visual display. How are they managing this? Well, it’s through the use of

smart assistants! Why spend time trawling through the web site, when

you can get the likes of Amazon’s Alexa or Apple’s Siri to do the work

for you?

The second, or accessibility, is a crucial factor in today’s world of

inclusion – we already have screen readers which can (to a greater or

lesser extent) help partially sighted people around web sites. The trouble

is it requires us developers to expend considerable amount of time and

resource on adding ARIA-based accessibility capabilities – this is useful,

but there is a risk it may not work so well for every site or restrict how we

do things. Instead, why not get the web site to do the work for us? We can

always start with providing basic capabilities, along with accessibility tags,

but adding speech capabilities will allow us to be more flexible and offer a

more personal touch.

The third and final reason of “why not?” is exactly as it says on the tin –

why not? We should never feel constrained by the need to keep things safe

or only do what we know; after all while, this gets boring, and we begin to

lose appetite! We should absolutely look to push the boundaries of what

we can achieve – it may or may not always work, but after all, you won’t

know until you try, right?

With that earth-shattering thought in mind, let’s move on. We will

shortly take a look at how we are going to architect our project for this

chapter, but before we do so, let’s turn our attention to how we’re going to

keep things in scope and make sure this project stays on track.

Chapter 9 projeCt: automating the purChase proCess

277

 Keeping things in scope
It’s at this point where we must be careful – building an e-commerce shop,

let alone adding speech capabilities to it, can easily fill the pages of an

entire book, if we’re not careful!

With this mind, we’re going to limit ourselves to a couple of key

processes, so you can get a flavor of how a speech option can be set up and

extend it to cover other areas in your own projects. The two key areas we

will cover are

• Adding a product to cart – we’ll set up the code for a

four-product shop (this should be enough to show a

little variety; it’s the same process whether we sell a

limited range or hundreds of products).

• Checking out by entering card details and hitting a

payment button – this will simulate payment being sent

and receiving a positive response in return.

We will not be going through the mechanics of how to construct our

shop, as the amount of code required is too substantial to do it justice in

the space that we have available in this chapter! Instead, we will assume we

have a basic, but functional, shop working and proceed on the basis that

we will add speech capabilities to it.

We will go through some pointers to get you started on extending the
shop to cover other areas, toward the end of the chapter.

Okay, now we’ve set the scene, it’s time to delve into the tools we will

be using; we’ve already met and used two (in the form of the Speech APIs),

but we will make use of some others within our project.

Chapter 9 projeCt: automating the purChase proCess

278

 Architecting the project
As with any project, we could use any one of a variety of different tools for

the job – it goes without saying that there is clearly no one tool we could

(or should) use! We already know we’re going to use the Speech APIs that

we’ve seen from earlier, but to make this work, we need to introduce a

handful of extra technologies. They are as follows:

• CompressPNG.com (https://compresspng.com) –

this I’ve used to compress the PNG images used in

this demo; it’s not strictly necessary in a development

capacity, but the originals were larger than needed!

• Google Fonts – we’re using the Open Sans and Caveat

fonts available from https://fonts.google.com; these

can be downloaded and set up locally if needed.

• jQuery – downloaded and renamed from the

jQuery CDN at https://code.jquery.com/jquery-

3.4.1.min.js.

• Stripe – we’re using a jQuery-based plugin library from

Stripe, to help with formatting and managing the credit

card details; this is available from https://stripe.

github.io/jquery.payment/lib/jquery.payment.js.

• Font Awesome – for this we’re using the MaxCDN

link at https://maxcdn.bootstrapcdn.com/font-

awesome/4.5.0/css/font-awesome.min.css – this is

used for the basket icon in the cart.

Note the use of jQuery is for convenience only; in an ideal world,
we would look to remove it out of use and likely focus on using
vanilla javascript or a framework such as react or Vue.

Chapter 9 projeCt: automating the purChase proCess

https://compresspng.com
https://fonts.google.com
https://code.jquery.com/jquery-3.4.1.min.js
https://code.jquery.com/jquery-3.4.1.min.js
https://stripe.github.io/jquery.payment/lib/jquery.payment.js
https://stripe.github.io/jquery.payment/lib/jquery.payment.js
https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css
https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css

279

Okay, with that out of the way, let’s move on. It’s time to get stuck into

coding! Over the next few pages, we’re going to cover a fair amount of code;

for reasons of space, we will focus mostly on the JavaScript used for the

speech capabilities, as the HTML markup and CSS styling are standard fare.

With this in mind, let’s dive in and take a look at the code in closer detail.

 Preparing our shopping cart
It’s time to start setting things up. For our final project for this book, we’re

going to create a basic shop to sell a limited range of cookies – not just

any ol’ cookies as my mama used to say, but ones that are really soft and

chewy…mmm…but I digress!

From a technical perspective, our demo will be an amalgamation of

code based on two CodePen demos and speech recognition code from

earlier demos; the shop is a cut-down version of a Pen by Virgil Pana from

https://codepen.io/virgilpana/pen/ZYqJXN, with the pop-out payment

form based on the Pen by Maycon Luiz at https://codepen.io/mycnlz/

pen/reLOZV. It’s possible to create something from scratch, but given the

constraints on space available in this book, we wouldn’t be able to do it

justice!

SETTING UP THE SHOPPING CART

Leaving that aside, let’s make a start with setting up our shop:

 1. We’ll begin by extracting a copy of the shop folder from the

code download that accompanies this book; go ahead and save

it to our project area.

 2. Fire up your browser, and then head over to https://

speech/shop/. if all is well, we should see the shop appear,

similar to the screenshot shown in Figure 9-1.

Chapter 9 projeCt: automating the purChase proCess

https://codepen.io/virgilpana/pen/ZYqJXN
https://codepen.io/mycnlz/pen/reLOZV
https://codepen.io/mycnlz/pen/reLOZV

280

 Setting expectations
At this point we have a functional shop (of sorts) – granted it’s not going to

be perfect, but it will be sufficient for our needs. It is important to set the

right expectations though, so in the interests of transparency, there are a

couple of points to bear in mind throughout this chapter:

• The code is not production-ready – indeed, much

of the functionality one would expect to see in a

shop gallery and checkout process is not present.

This chapter is not about building shopping carts,

but establishing how we might make them available

through use of verbal commands. It’s for this reason

that we will focus more on the techniques to do this,

rather than the shop itself.

Figure 9-1. Our initial shop

Chapter 9 projeCt: automating the purChase proCess

281

• For reasons of space, I will focus on the key parts

of selecting a product from a gallery and putting it

through a (simulated) purchase – one might argue

that searching for a product is also essential, but

that’s not going to be any good if we can’t add it to our

basket! The key though is that the principles for “voice

enabling” our site will be the same for most parts of the

site, so we can always adapt existing code to work for

other areas.

With this out of the way, let’s turn our attention to the bit I know you’re

all waiting for – updating our demo! Don’t worry. It’s coming in just a few

lines, but before we get stuck in, let’s look at the steps involved in updating

our demo in more detail.

 Adding speech capabilities
Okay, it’s crunch time! Mmm, perhaps that was a little too cheesy, given that

the products in our shop are cookies, but I digress… Anyway, back to reality.

When adding speech capabilities, we can do this in stages; here are the

steps we need to follow:

• Add in the markup and styling for our microphone and

responses.

• Adjust the markup around the products.

• Adding in the script functionality to make it operational.

• Add in basic styling to make our demo look presentable.

The first stage in our process is to add in the markup that controls the

microphone and renders any response on screen – once in, we can test it

to confirm our site is receiving speech and will be able to act on it once our

product markup and script is in place. Let’s dive in and take a look at adding

in that markup, so we can start to see our speech capabilities take shape.

Chapter 9 projeCt: automating the purChase proCess

282

 Inserting the markup for our microphone
The first part of updating our demo is very straightforward – we first need

to add in our markup for both the microphone and various messages or

responses and then add in our visual indicators so customers know what

to say when using their microphone.

There isn’t anything particularly complex in this first part, although

there is an interesting use of data tags; we’ll explore the reasoning for their

use after the demo. Let’s first go ahead with updating or adding in the

relevant markup to our demo.

ADDING SPEECH PART 1: THE MICROPHONE MARKUP

to add in our markup, follow these steps:

 1. all of our changes are in the index.html file that came in the

shop folder as part of the download – go ahead and open it in

your usual text editor.

 2. next, look for the <div id="sidebar" block, and add

in this markup immediately before its closing </div> element.

We should end up with something like this:

 <button id="microphone">

 <i class="fa fa-microphone"></i> Click and talk to me!

 </button>

 <div class="response">

 </div>

 <p class="output">You said: <strong class="output_result">

</p>

 Spoken voice: US English

</div>

Chapter 9 projeCt: automating the purChase proCess

283

 3. go ahead and save the file and then minimize it – we will need

to revert to it in the next exercise.

 4. next, we need to add in some basic styling for our microphone

button and response text. For this, crack open the styles.css

file, and scroll all the way to the bottom.

 5. once at the bottom, add in the following style rules:

/* SPEECH RECOGNITION --------------------------- */

.speechterm { padding-left: 15px; font-style: italic; }

i.fa.fa-microphone { padding-right: 10px; }

p.output { padding: 10px 0; }

#microphone { margin-top: 20px; }

#microphone:hover { background-color: darkgrey; }

 6. at this point, save your work, and close the styles.css file –

we’ve added all that we need to for this demo.

 7. We can now preview the results of our work – for this,

browse to https://speech/shop/. if all is well, we

should see something akin to the screenshot shown in

Figure 9-2.

Figure 9-2. The updated shop, with a microphone option added

Chapter 9 projeCt: automating the purChase proCess

284

At this stage, we haven’t really made any significant changes – we now

have the basis though for a microphone button, along with spaces for

various responses from the user or messages back from the API. Rather

than explore the code changes at this point, we will do that at the end of

the next exercise. So without further ado, let’s swiftly move on and explore

what needs to be updated to enable each product within the gallery for the

API in more detail.

 Altering our product markup
With our microphone markup inserted, we can now turn our attention to

“enabling” each cookie for use in our speech recognition function.

I say “enable” for want of a better way to express it, but all we’re doing

is adjusting our markup to make it easier for our code to recognize and add

the right cookie into our basket. Trust me – it might not make sense now,

but it will all become clear once we complete the exercise! Keeping that in

mind, let’s make a start on updating the markup.

ADDING SPEECH PART 2: UPDATING PRODUCT MARKUP

to update our product markup, follow these steps:

 1. the first stage is to revert back to the index.html file we had

open from the previous exercise – all of the changes for this

part of the demo will be in this file.

 2. the first change is to update the Cherry Bakewell cookie – look

for the add_to_cart <div> element and add in the data tag

as indicated:

<div class="add_to_cart" data-product="cherry

bakewell">Add to cart</div>

Chapter 9 projeCt: automating the purChase proCess

285

 3. next, scroll down a couple of lines and insert this markup

immediately below the <span class="product_price"...

line:

 $0.50

 <i class="fa fa-microphone">

</i>"Add a cherry"

this will add a microphone and suitable text against the cookie,

so our customer has an indication of how to ask for it verbally.

 4. We need to repeat steps 2 and 3 for the remaining three

products – for the next cookie (Dark Chocolate), add in the data

tag as indicated:

<div class="add_to_cart" data-product="dark

chocolate">Add to cart</div>

 5. immediately below that cookie’s product_price markup,

add in this line of code – this will “enable” the Dark Chocolate

cookie for our speech recognition function:

<i class="fa fa-microphone">

</i>"Add a dark"

 6. We need to perform a similar change to the raspberry and

White Chocolate cookie too – for this, add in the highlighted

code as indicated:

<div class="add_to_cart" data-product="raspberry">Add to

cart</div>

 7. in a similar fashion to previous cookies, we need to add in the

microphone markup too – for this, add in the following line

immediately below this cookie’s product_price line:

<i class="fa fa-microphone">

</i>"Add a raspberry"

Chapter 9 projeCt: automating the purChase proCess

286

 8. Last but by no means least, go ahead and add in the data tag

as indicated for the toffee cookie:

<div class="add_to_cart" data-product="toffee">Add to

cart</div>

 9. there is one more change we need to make for this product –

immediately below its product_price markup line, add in this code:

<i class="fa fa-microphone">

</i>"Add a toffee"

 10. go ahead and save the file – we now preview the results! For

this, browse to https://speech/shop; if all is well, we

should see all four cookies now have a visual indicator as to

what to ask for, when using our microphone (Figure 9-3).

Figure 9-3. “We can now speak to one of our cookies...”

Mmm, just looking at that cookie is making me feel really hungry.

Chuckle! Leaving thoughts of food aside for the moment, the changes

we’ve added to our code may seem a little unusual, but as promised, there

is method in the madness! Before I explain more, let’s take a look at the

code in more detail.

Chapter 9 projeCt: automating the purChase proCess

287

 Dissecting the code

Much of the markup we’ve used is very similar – the changes we’ve

made fall into two camps: the first is to add in the markup around the

microphone button, and the second is to adjust our markup for each

product.

The first block adds a standard <button> element into our markup,

plus a div element and two spans – the latter are used for displaying

responses from the API (such as any errors), responses from the user, and

an indication of the voice used by the API. Moving on, we then added in a

data-product tag to each cookie, along with a visual indication of what to

ask for when using the microphone, in the form of the .speechterm span.

Now, as promised, there is a reason for using data tags. As you will

see later in the code, we use a generic .add_to_cart class to trigger the

 addition of any cookie into the basket. In principle, this seems like a

sensible idea, right?

Wrong – if we used this on its own, we would have a problem: it will

add in four instances of the same cookie at once! The reason for this is

down to how jQuery works – the .add_to_cart class will be applied to all

four products, as we use the same class against each product.

To get around it, we add in the data tags so that we have a specific

reference to each cookie. The key though is in how we trigger the call to

add the item – we use the data-tag property which is bound to each add_

to_cart div. Referencing this dynamically means we can pass an instance

of the add_to_cart div to the event handler:

$('[data-product="' + cookieChosen + '"]').trigger("click");

Don’t worry if it doesn’t entirely make sense now – we will revisit this

when we go through the code that we add to make our demo work!

Chapter 9 projeCt: automating the purChase proCess

288

 Adding the script functionality
Moving on, the next task on our list is to add in the code that we need to

operate the speech feature. Much of this you will have seen from previous

demos, so it shouldn’t be entirely unfamiliar by now; the key to it is in how

we turn our speech response into something our code can recognize and

use to add in the appropriate cookie. To give you a flavor of how it will look,

you can see what will be the completed article in Figure 9-4.

Figure 9-4. A cookie added the basket using our voice

With that in mind, let’s turn our attention to setting up our demo.

Chapter 9 projeCt: automating the purChase proCess

289

ADDING SPEECH PART 3: MAKING IT WORK

Let’s make a start on adding in the script for our demo:

 1. For this exercise, all of the changes we make will be in the

script.js file, so go ahead and open this in your usual text

editor.

 2. scroll all the way down to the bottom, until you see these

comments:

/* SPEECH RECOGNITION ------------------------------ */

/* Code to be added here */

 3. this is where we will add in our code – there is a fair chunk to

add, so we will go through it block by block.

 4. the first block is to add in a number of variable or object

declarations and set up values for some of the speech

recognition api. go ahead and leave a blank line and then add

in the following code below the second comment from the

previous step:

const log = document.querySelector(".output_log");

const output = document.querySelector(".output_result");

const SpeechRecognition = window.SpeechRecognition ||

window.webkitSpeechRecognition;

const recognition = new SpeechRecognition();

recognition.interimResults = false;

recognition.maxAlternatives = 1;

recognition.continuous = true;

Chapter 9 projeCt: automating the purChase proCess

290

 5. the first event handler we need to add in takes care of enabling

our microphone for use – here we set a couple of properties to

configure the instance of the speech recognition api. add in

the following code, leaving a blank line after the code from the

previous step:

document.querySelector("#microphone").addEventListener

("click", () => {

 let recogLang = "en-GB";

 recognition.lang = recogLang.value;

 recognition.start();

 });

 6. the next handler we add in fires when speech has been

detected – this includes background noise! For this, add in the

following code, leaving a blank line after the code from the

previous step:

 recognition.addEventListener("speechstart", () => {

 log.textContent = "Speech has been detected.";

 });

 7. this next step is where the magic starts to happen – it’s here

where we detect what has been said, parse the contents, and

determine what action to take as a result. it’s a fair block of

code, so we’ll split it into several parts – to set up the basic

handler, go ahead and add in this code, leaving a blank line

after the code from the previous step:

 recognition.addEventListener("result", (e) => {

 log.textContent = "Result has been detected.";

 let last = e.results.length - 1;

 let text = e.results[last][0].transcript;

 output.textContent = text;

Chapter 9 projeCt: automating the purChase proCess

291

 // ACTION CODE HERE

 log.textContent = "Confidence: " + (e.results[0][0].

confidence * 100).toFixed(2) + "%";

 });

 8. With the basic handler now in place, we can begin to extend it.

Look for this line of code – // ACTION CODE HERE – in the

previous step, and then replace it with this conditional block:

 // SR - "Add an X to the basket"

 if (text.search(/\badd\b/)) {

 var request = text.split(" ").pop();

 console.log(request);

 var cookieChosen;

 if (request == "cherry") {

 cookieChosen = "cherry bakewell";

 }

 if (request == "dark") {

 cookieChosen = "dark chocolate";

 }

 if (request == "raspberry") {

 cookieChosen = "raspberry";

 }

 if (request == "toffee") {

 cookieChosen = "toffee";

 }

 $('[data-product="' + cookieChosen + '"]').

trigger("click");

Chapter 9 projeCt: automating the purChase proCess

292

 9. For the third and final part of this conditional block, go ahead

and add in the following lines below the data-product

assignment from the previous step, leaving a blank line in

between:

 /* ----------------- */

 /* click on checkout */

 if (text.indexOf("check") != -1) {

 $("#checkout").trigger("click");

 }

 /* ----------------- */

 /* enter credit card number */

 if (text.indexOf("credit card") != -1) {

 $("#cardnumber").val("4111111111111111");

 }

 /* ----------------- */

 /* enter card date */

 if (text.indexOf("expiry") != -1) {

 $("#cardexpiration").val("10/2022");

 }

 /* ----------------- */

 /* enter CVV number */

 if (text.indexOf("security") != -1) {

 $("#cardcvc").val("672");

 }

 /* ----------------- */

 /* click on purchase */

 if (text.indexOf("purchase") != -1) {

 $("div.card-form > button > span").trigger("click");

 }

 }

Chapter 9 projeCt: automating the purChase proCess

293

 10. We have three event handlers left, which look simple in

comparison to that last event handler! the next one to add in

will fire when the api detects no more speech can be heard:

 recognition.addEventListener("speechend", () => {

 recognition.stop();

 });

 11. this next event handler also fires when no more speech is

detected, but there is a subtle difference – this one fires once

the api has shut down. go ahead and add in the following code,

leaving a blank line after the previous event handler:

 recognition.onspeechend = function() {

 log.textContent = 'You were quiet for a while so voice

recognition turned itself off.';

 console.log("off");

 };

 12. Last but by no means least, we need to implement some

basic error handling – for now, we’ll just render on screen any

errors that are generated by the api. go ahead and add in the

following code:

 recognition.addEventListener("error", e => {

 if (e.error == "no-speech") {

 output.textContent = "Error: no speech detected";

 } else {

 output.textContent = "Error: " + e.error;

 }

 });

Chapter 9 projeCt: automating the purChase proCess

294

 13. at this point we are done with editing our file. go ahead and

save it and then close the file. We can now preview our results.

Browse to https://speech/shop/, click the microphone

button, and then try saying “add a cherry” into the microphone.

if all is well, we should see something akin to the screenshot

shown at the start of this exercise.

We now have a working add to cart process – we should be able to add

any of the four cookies into our cart. We’ve seen it working with the Cherry

Bakewell (as indicated in Figure 9-4), but for some there may be a sting in

this tale! It’s something we’ve seen happen before (remember the Alexa

clone demo?) – before we explore what it is, let’s go through the code in

more detail, as there are a couple of key changes to what we’ve used from

earlier demos.

 Breaking apart our code

Over the course of this chapter, we’ve covered a good chunk of code, as

part of adding in our speech feature – much of it by now should begin to

look familiar, particularly as we’ve used parts from earlier demos in this

book. That said, it’s still a good idea to go through the code we’ve added in

more detail – there is a key section we need to be aware of, so let’s dive in

and take a look in more detail.

We kicked off the speech recognition part by defining a couple of

constants – we use .output_log to display messages from the API and

.output_result to display transcribed text from the customer. We then

create a new instance of the Speech Recognition API; this uses either

the native implementation or the vendor-prefixed version, depending

on the browser being used. Alongside this, we also set three properties –

interimResults to false (so we only get the end result), maxAlternatives

to 1 (we focus on getting the original, detected word and not possible

Chapter 9 projeCt: automating the purChase proCess

295

alternatives), and continuous to true (so the Speech Recognition API

doesn’t switch off too quickly).

We then had a series of event handlers. The first allows the customer to

enable their microphone from within the browser; this sets the language to

use as US English ("en-US"), before firing up the recognition service. This

is followed by the speechstart event handler, which will fire as soon as

any spoken text is detected (and not necessarily from the customer!).

The key part of this demo is up next – this is an expanded result event

handler. This first detects if spoken text has been recognized by the service,

before assigning the contents of the spoken transcript to the text variable.

We then split the content of this variable and take the last entry, using the

pop() method. This is important, as this is stored in the cookieChosen

variable; we used this to trigger the right add to cart button.

It’s worth pausing for a moment, as a glance through the code will

show nothing that could be termed as a pure add to cart button handler!

We touched on this earlier in the chapter, with good reason – we could

create something that assigns a unique ID or class, but getting this right

will be tricky. We might end up with a lot of handlers, or a really ugly one-

size- fits-all approach.

Instead, we’re using a data-product tag – we dynamically concatenated

the value saved from cookieChosen into the event which triggers the click

handler that fires the right button. This works, as if you look closely at our

markup, you’ll see the data-tag is against the add_to_cart div, as indicated

in Figure 9-5.

Figure 9-5. An example of the data-tag used in the markup

Chapter 9 projeCt: automating the purChase proCess

296

For the remainder of that event handler, we simply used a set of

condition checks – if the results of our transcribed text contain certain

words such as card, security, or expiry, we enter test values into the

appropriate fields. The last step for the event handler adds in a trigger

mechanism for submitting payment – we’re simulating this in our demo,

but it’s at this point payment would be made if this were in production use.

You will have noticed the use of fake credit card details in this demo. this
is not recommended practice; they are there to illustrate a pitfall for this
demo. We will go through what this means for us later in the chapter.

The remainder of the code contains event handlers we’ve used

in previous demos – we have the two speechend handlers and one to

cover basic error handling in our demo. There is a reason for having two

speechend handlers though: the first one (speechend) fires when the

service detects that we’ve stopped speaking (and so shuts itself down);

the second (onspeechend) kicks in once this has happened and puts an

appropriate message on screen for our customers.

Okay, let’s move on. We’ve constructed a basic shopping cart, which

uses a custom checkout process. There is a relatively new API that aims to

standardize the checkout form across all browsers. The question is, can

we apply the same principles to voice-enable it? In an ideal world, there

shouldn’t be any difference, except this time we might not be so lucky.

To see what I mean, let’s take a look at how this change might affect our

strategy and whether we might need to reconsider our plans.

 An alternative method of checking out
For as long as I can remember (and that’s going back just over 20 years!),

anyone purchasing goods over the Internet would have no doubt been

through a checkout process that was either custom built or developed from

Chapter 9 projeCt: automating the purChase proCess

297

one of the commercial offerings such as Actinic. There was nothing wrong

with this (at the time), but many are now seen as clunky and difficult to

maintain – it’s frequently an area where one sees the biggest drop-out

during the whole purchasing process!

Over the last few years, the W3C and browser vendors have been

developing a standardized API that can be surfaced directly from within

the browser – this is now known as the Payment Request API. Although

it will look different in each browser, under the covers it offers a standard

framework into which payment providers can plug in their own payment

handlers, without having to worry about the UI or user experience.

For our next exercise, we’re going to make use of this API to produce

a simple payment checkout – it won’t have all of the bells and whistles

that can come with the API, but will at least allow us to run through the

checkout process. As a taster, Figure 9-6 illustrates how our demo will look,

once we implement the changes needed for the Request Payment API.

Figure 9-6. Our alternative method of payment in action

Now that we’ve seen what it will look like, let’s get stuck into making

the changes for our demo.

Chapter 9 projeCt: automating the purChase proCess

298

USING THE PAYMENT REQUEST API

For this demo, i would recommend taking a copy of your completed shop folder

from the previous demo and then saving it as shop-alternative; we will use

this as a basis for swapping out the manual checkout for the payment request api.

if you get stuck, there is a completed version of this demo in the code download

that accompanies this book; it’s in the shop-alternative – finished version folder.

to complete the swap, go ahead with these steps:

 1. the first task is to strip out the payment section in our markup

file – for this, look for the line starting <!--- PAYMENT....,

and then remove from this down to the closing </div> tag just

before <div id="header">.

 2. next, switch to the script.js, so we can remove the modal, as

this is no longer needed. Look for the line starting /* MODAL

----, and then remove it and the code down to the closing });

just before the /* PAYMENT FORM... line.

 3. We also need to remove the original payment block – look

for and remove the block starting with /* PAYMENT FORM

---... – remove to just before /* SPEECH RECOGNITION

---....

 4. We have a new block of code to insert as a replacement for our

payment handler – go ahead and insert this code as the first

part of our handler:

 /* PAYMENT FORM USING PAYMENT REQUEST API---------- */

 const methodData = [{

 supportedMethods: 'basic-card',

 data: {

Chapter 9 projeCt: automating the purChase proCess

299

 supportedNetworks: ['visa', 'mastercard', 'amex']

 }

 }];

 5. the real meat of the payment request comes in the form of

this next event handler – leave a line blank, and then add in the

following code below the methodData constant:

 document.getElementById('checkout').onclick = function (e) {

 if(window.PaymentRequest) {

 let subtotal = Number(countCookies * 0.50);

 let tax = 1.99;

 let shipping = 2.99;

 const details = {

 total: {

 label: 'Total due',

 amount: { currency: 'USD', value: (subtotal + tax

+ shipping).toFixed(2) }

 },

 displayItems: [{

 label: 'Sub-total',

 amount: { currency: 'USD', value: subtotal.toFixed(2) }

 }, {

 label: 'Delivery',

 amount: { currency: 'USD', value: 2.99 }

 }, {

 label: 'Sales Tax',

 amount: { currency: 'USD', value: tax.toFixed(2) }

 }]

 };

 const options = { requestPayerEmail: true };

 const request = new PaymentRequest(methodData, details,

options);

Chapter 9 projeCt: automating the purChase proCess

300

 //Show the Native UI

 request

 .show()

 .then(function(result) {

 result.complete('success')

 .then(console.log(JSON.stringify(result)));

 }).catch(function(err) {

 console.error(err.message);

 });

 } else {

 // Fallback to traditional checkout

 }

 };

 6. We’re almost done. there is one last block of code to remove. in

the speech recognition block, look for and remove this code, as

it is no longer needed:

 /* ----------------- */

 /* enter credit card number */

 if (text.indexOf("credit card") != -1) {

 $("#cardnumber").val("4111111111111111");

 }

 /* ----------------- */

 /* enter card date */

 if (text.indexOf("expiry") != -1) {

 $("#cardexpiration").val("10/2022");

 }

 /* ----------------- */

 /* enter CVV number */

 if (text.indexOf("security") != -1) {

 $("#cardcvc").val("672");

 }

Chapter 9 projeCt: automating the purChase proCess

301

this might seem a little odd, but there is a good reason for its removal – all will be

revealed shortly.

 7. We’re done with editing. go ahead and save both index.html

and script.js; they can now be closed.

 8. at this point, we can now preview the results of our changes –

fire up your browser, and then navigate to https://speech/

shop- alternative. if all is well, we should see something

akin to the view shown in Figure 9-6, where our alternative

checkout form is being displayed.

Over the course of this exercise, we’ve stripped out the original payment

form and replaced it with an instance from the Payment Request API. This

might seem OK, but notice how we had removed some of the checks done in

our original version, as part of step 6? I alluded to this as seeming odd at the

time, but there is a good reason for this – for the explanation, and more, let’s

dive in and take a look at the changes in more detail.

 Breaking apart the code
Over the course of this chapter, we’ve made some radical changes. We

kicked off by removing the original payment code from within our markup

file, along with the modal. Neither of these was required, as the form

would be provided by the Payment Request API from within the browser.

Next up, we did something similar, but in the script.js file – we

evicted the entire payment block there, as the original code would be

redundant, once we entered in our new Payment Request code.

The real crux of our demo came in the form of the new Payment

Request API code; we started by declaring a methodData constant, which

defines the accepted payment methods allowed by our browser. We’ve

Chapter 9 projeCt: automating the purChase proCess

302

stuck with basic-card, which is the method that is available out of the box;

it’s an unsecured method and shouldn’t be used in practice, but is okay for

testing purposes only.

We then added in an event handler that is fired as soon as the

#checkout div is clicked; this can either be by mouse or verbally, as we

did in the original version of this demo. This first is a check for window.

PaymentRequest, to see if our browser supports it – assuming it does, we

define a set of variables for subtotal, tax, and shipping (all others have

already been declared elsewhere in the code).

In the next constant (details), we defined an object that contains both

the label texts and amounts to display in our form, before initiating an

instance of the Payment Request API as request. This is then called as a

promise; we first show() the form and then either fire the .complete()

method which displays the results in console or throw an error via the

catch() trap, to declare that there’s been a problem with our payment

process.

if you are interested in learning more about the payment request
api, then you might like to refer to my book, Checking Out with the
Payment Request API, published by apress.

 Reducing the functionality: A note
Before we finish with this demo, there is something we should consider

for a moment – remember how I said we needed to remove a chunk of

conditional checks from our code? You can see what I mean in Figure 9-7,

where we’ve removed the original if statements for checking the credit card

number, expiry date, and CVV security number.

Chapter 9 projeCt: automating the purChase proCess

303

The reason we can’t include these checks is simple – the Payment

Request API form is built into the browser and therefore can’t be surfaced

to allow us to interact with it. It means that while the rest of our basket can

be controlled by voice, we can’t control the checkout form itself!

In some respects, this can be seen as making the site less accessible –

it therefore means that we have to provide a fallback or set it so that the

Payment Request API can be enabled over the standard payment checkout

process. The great thing is though the API is still in a state of flux; while it

is sufficiently stable to use now, things will likely change before it reaches

official status, so who knows? Support for the speech API could well be

improved!

Let’s move on. Our demo is now complete, but it’s not the end of the

story though! There is unfortunately a bit of a sting in this tale, which will

affect our shop. To understand why, let’s dive in and take a look at some

of the pitfalls we might experience when adding speech capabilities to an

e-commerce site, in greater detail.

 Exploring the pitfalls of our solution
It’s time for a confession. Yes, I hear you. You’re probably thinking, Uh-

oh…what’s that sting he’s referring to, I wonder? You’d be right to be

cautious, but don’t worry. It’s not all as bad as it might seem! The Speech

APIs are still very new and have yet to reach candidate recommendation

Figure 9-7. Our updated demo, sans conditional checks

Chapter 9 projeCt: automating the purChase proCess

304

by the W3C. That doesn’t mean we can’t use them, but that we need to

exercise a certain amount of caution. Let’s take a look at some of these

pitfalls in more detail:

• The first one is that you might be surprised at some of

the visual labels used – notice how none of them give

the full name, but something such as “Add a cherry”?

There is a good reason for this – had we used the full

name, we would have found that not all of the cookies

could be added! The cause is down to something

we covered back in the Alexa clone demo: the APIs

struggle to recognize certain words, particularly if there

is little contrast between different syllables. This isn’t

something that can be fixed as such, but fine-tuned;

we need to be careful about which words we choose to

select our products, and only testing will identify the

best combination to use.

• If you try clicking the microphone button to enable

speech and then verbally ask the site to add a product,

you may well find that you have to do this twice for

the first product. The API takes a few moments to

fully activate, so its possible customers will try to add

products before the microphone is fully ready. To work

around this, we can implement a Promise() to make

the microphone cues only appear after a certain time –

it’s a minor change, but definitely worth doing!

• As we’ve seen with the Payment Request API, we

are limited in what we can do – we will be able to

display the form using our voice, but from there on

in, it’s a matter of having to type or click buttons. It

does mean that (at least for now) this may be a less

Chapter 9 projeCt: automating the purChase proCess

305

attractive option and perhaps enabled only for those

who don’t want to use voice services. This isn’t great,

as the Payment Request API is meant to streamline

the process; however, as this API is yet to become

mainstream, we will have to work with what is

available!

• The recognition.lang property we’ve set in our code

is something we need to consider carefully – in this

multicultural world we live in, not everyone will be

able to speak English, let alone US English, which is the

default value for the Speech API! While setting a value

is easy, setting the right value is harder – do we set

based on a fixed language for a site or based on what

country our customer is from? A lot of this depends

on how you operate your site – is it one single site in

multiple languages (not good for SEO) or multiple sites,

with the same branding but in different languages?

• You will have noticed from the demo that we hard-

coded credit card details – in practice, we did this to

provide the process of submitting the checkout form

works and not as an excuse to hard-code any values

into our solution! We could use the existing API as a

basis for recognizing each number entered, but to do

this we might have to say “number one,” rather than

just "one." It’s a question of balancing reliability against

a desire to not irritate our customers as it takes too long

to enter any details!

Hopefully this gives us something to think about. It should not put

us off from using the API; we can work around these limitations. It does

emphasize the importance though of making sure that we carefully

Chapter 9 projeCt: automating the purChase proCess

306

consider the wider implications of using the API and that we factor this into

any development work that makes use of these APIs within our solutions.

Okay, let’s move on. Now that we’ve built our basic demo and added

speech capabilities to it, it’s time to consider how we can expand on our

demo. There are a few things that come to mind, to help get you started;

let’s dive in and take a look at them in greater detail.

 Taking things further
If someone were to ask me how we could take our project further, I think

my usual answer would be “the world is your oyster” – inasmuch as you

can go wherever you want to take it, provided you can get it working! It

seems somewhat ironic that this phrase doesn’t come from a technical

origin, but dates back to Shakespeare’s The Merry Wives of Windsor, which

is over 400 years old! But I digress…

Anyway, back to reality, what can one do? Well, there are a few

things that we could look at and implement, over and above adding in

the remaining functionality that one would expect to see in a basket and

checkout process. Let’s take a look at those ideas in more detail:

• One of the obvious ones is better language support –

remember how we set recognition.lang to "en-US" in

our demo? Well, we could investigate the possibility

of implementing a language selector that you often

see on web sites, as well as setting the language for

the page; it could be used to set a suitable language

value at the same time. For example, for sites based in

countries such as Estonia, where they speak Finnish,

Russian, and English among other languages, you

could set values such as fi-FI, ru-RU, en-US, and et-EE

(for Estonia). This will allow our Speech API to better

recognize text based in that country’s dialect.

Chapter 9 projeCt: automating the purChase proCess

307

• Staying with the theme of language support, how would

we go about localizing our site, to accept requests in

other languages? One solution might be to use JSON

to provide local language equivalents of each trigger

phrase (such as the ones used by each microphone

symbol in our demo). We could call each of these

instead of hard-coding them into our demo.

• We’ve used the Speech Recognition API to add

products in or to trigger the checkout process – what

about using the Speech Synthesis API to give a verbal

indication of a completed action? We don’t have

anything that indicates when each action has taken

place (save for seeing it on screen) – it would be helpful

to those individuals with sight challenges to have

something that tells them when an action has been

completed.

• How about avoiding the use of credit cards altogether

and implementing a more modern payment

method such as Google Pay? There are lots of

different companies that offer this support, such as

Braintree – you can see an example of how they set up

payments using JavaScript at https://developers.

braintreepayments.com/guides/google-pay/client-

side/javascript/v3. The idea here is that if we can

implement something (and assuming you have an

appropriate account, of course), then it should be easy

enough to provide a link to initiating the request to

make payment.

This is just a few ideas to get you started – I’m sure you can think of

more, but as the lead into this section says, the world really is your oyster!

Chapter 9 projeCt: automating the purChase proCess

https://developers.braintreepayments.com/guides/google-pay/client-side/javascript/v3
https://developers.braintreepayments.com/guides/google-pay/client-side/javascript/v3
https://developers.braintreepayments.com/guides/google-pay/client-side/javascript/v3

308

It’s all a matter of thinking where you could use speech capabilities in

your site and giving it due consideration as to whether it would really help

customers or would just be seen as nothing more than a gimmick that

customers would be happy to do without!

 Summary
The Web Speech API is a simple tool to implement, but is great for making

sites more accessible – despite still being in a state of development! Over

the course of this chapter, we’ve explored how to use it in a basic shopping

cart and checkout process; let’s review what we have learned.

We kicked off by introducing the chapter and setting the scene. We

then went through what would be included in the scope of this chapter,

before covering off the tools we would use to architect our final solution. At

the same time, we talked briefly about setting expectations, inasmuch as

we wouldn’t be able to cover every part of the purchase process and would

focus on the core element in this chapter.

Next up, we delved into adding the code that would make our speech

capability tick; we explored the changes needed to modify our markup,

before adding in the script for our demo. We then moved onto exploring

an alternative checkout process using the relatively new Payment Request

API, to see how this might affect our use of speech in our demo.

We then rounded out the chapter with a look at some of the pitfalls

we need to be aware of, when using the Speech APIs in the context of the

checkout process, before exploring some of the avenues we could follow to

help extend and expand our demo for production use.

Phew! We’ve come to the end of the book. What a journey! I hope

you’ve enjoyed working through the projects within as much as I have

writing this book and that you’ve now gained a greater understanding of

how to use the Speech APIs within your future projects.

Chapter 9 projeCt: automating the purChase proCess

309© Alex Libby 2020
A. Libby, Introducing the HTML5 Web Speech API,
https://doi.org/10.1007/978-1-4842-5735-7

APPENDIX

API Reference
 API Reference: SpeechRecognition
The SpeechRecognition interface is the controller interface

for the recognition service and takes care of managing the

SpeechRecognitionEvent sent from the recognition service.

Many of the properties in the SpeechRecognition interface are
inherited from its parent interface, EventTarget.

https://doi.org/10.1007/978-1-4842-5735-7

310

 Constructor
There is only one constructor object for the Speech Recognition API, which

is listed in Table A-2.

Table A-1. A list of interfaces for the SpeechRecognition API

Interface Purpose of interface, which represents…

SpeechRecognition This acts as the controller interface for the

recognition service and takes care of the

SpeechRecognitionEvent sent from the service.

SpeechRecognitionAlternative A single word that has been recognized by the

speech recognition service.

SpeechRecognitionError Error messages sent from the recognition service.

SpeechRecognitionEvent The event object for the result and nomatch events,

which contains details and data for interim or final

speech recognition results.

SpeechGrammar The words or patterns of words that we want the

recognition service to recognize.

SpeechGrammarList A list of SpeechGrammar objects.

Note: This interface may be removed in subsequent

versions of this API, due to confusion around its usage

SpeechRecognitionResult An instance where the service has recognized one or

more SpeechRecognitionAlternative objects.

SpeechRecognitionResultList One or more SpeechRecognitionResult objects,

depending on whether results are being captured in

continuous mode.

 API Interfaces
A list of interfaces for the Speech Recognition API is displayed in Table A-1.

APPENdIx API REfERENcE

311

Table A-2. Constructor for the SpeechRecognition API

Constructor Purpose

SpeechRecognition.SpeechRecognition() creates a new SpeechRecognition object.

 Properties
The Speech Recognition API has several properties available for us to use,

which are detailed in Table A-3.

Table A-3. Details of the properties available with the Speech

Recognition API

Property Purpose of property

SpeechRecognition.

grammars

Used to manage a collection of SpeechGrammar objects

that represent the grammars specified for use in the current

instance of the SpeechRecognition interface.

SpeechRecognition.

lang

can return or set the language of the current

SpeechRecognition; if this isn’t specified, it defaults to

either the HTML lang attribute value or the user agent's

language setting.

SpeechRecognition.

continuous

determines if Speech Recognition should display results as

they are returned or if it should render the final result. The

default setting is false, or the final result.

SpeechRecognition.

interimResults

determines if the API should display interim results (true),

which have yet to be marked as final (such as the . the

isfinal setting being set to false). The default for this value

is false.

(continued)

APPENdIx API REfERENcE

312

 Methods
There are three methods available for us to use with the Speech

Recognition API, which are listed in Table A-4.

Table A-4. Methods available within the Speech Recognition API

Method Purpose of method

SpeechRecognition.

abort()

Stops the speech recognition service from listening to

incoming audio and from returning an instance of the

SpeechRecognitionResult interface.

SpeechRecognition.

start()

Starts the speech recognition service to listen to incoming

audio and sets an intent to recognize grammars associated

with that instance of the Speech Recognition API.

SpeechRecognition.

stop()

Stops the speech recognition service from listening

to incoming audio and returns the results from

SpeechRecognitionResult, using the audio captured.

Property Purpose of property

SpeechRecognition.

maxAlternatives

This sets the maximum number of

SpeechRecognitionAlternatives that can be provided for

each result – the default value is 1.

SpeechRecognition.

serviceURI

Specifies where to host the speech recognition service,

used by the instance of the SpeechRecognition API.

The default is the user agent's default speech service.

Table A-3. (continued)

APPENdIx API REfERENcE

313

 Events
We can listen to any events within the Speech Recognition API, by using

addEventListener() or by assigning an event listener to the oneventname

property of this interface. The events available for us to use in this API are

listed in Table A-5.

Table A-5. Events available in the SpeechRecognition API

Event Event is fired when…

audiostart/

audioend

The user agent has started, or finished, capturing audio from the

microphone.

start/end The speech recognition service has begun listening to incoming

audio within the current instance of the Speech Recognition

service; the latter is fired when the service has been disconnected.

error An error is generated from the Speech Recognition service.

nomatch The Speech Recognition service returns a final value which is not a

clear winner or significant result. It is likely that the result doesn’t

meet or exceed the desired threshold for confidence.

result The speech recognition service returns a result which has been

positively identified and returned back to the application.

soundstart/

soundend

Any sound, irrespective of whether it is recognizable, has been

detected by the service, or has stopped being recognized by the

service.

speechstart/

speechend

The service has detected or stopped detecting sound that is

recognized by the speech recognition service as speech.

Note Many of the events in this API Reference are also available via
the on<name> property, such as onstart or onspeechend.

APPENdIx API REfERENcE

314

 API Reference: SpeechRecognitionEvent
The SpeechRecognitionEvent interface represents the event object and

data for the result and nomatch events, which is fired when an interim or

final result has been detected.

Many of the properties in the SpeechRecognitionEvent interface
are inherited from its parent interface, EventTarget.

 Properties
This interface has four read-only properties, which are detailed in Table A-6.

Table A-6. The properties available for SpeechRecognitionEvent

Property Returns…

SpeechRecognitionEvent.

interpretation

The semantic meaning of the text result from the

user.

SpeechRecognitionEvent.

emma

An Extensible MultiModal Annotation (EMMA) markup

language or xML-based representation of the result.

SpeechRecognitionEvent.

resultIndex

The lowest value result (by index) in the

SpeechRecognitionResultList array that has been

changed.

SpeechRecognitionEvent.

results

A SpeechRecognitionResultList object that represents

the speech recognition results for the current

session.

APPENdIx API REfERENcE

315

 API Reference: SpeechRecognitionError
The SpeechRecognitionErrorEvent interface contains information about

any errors that occur while processing SpeechSynthesisUtterance objects

in the speech service.

Many of the properties in the SpeechRecognitionErrorEvent
interface are inherited from its parent interface, EventTarget.

 Properties
This interface has two read-only properties, which are detailed

in Table A-7.

 API Reference: SpeechRecognitionResult
The SpeechRecognitionResult interface represents a single recognition

match that may contain multiple SpeechRecognitionAlternative objects.

 Properties
This interface has two read-only properties, which are listed in Table A-8.

Table A-7. Properties for the SpeechRecognitionError interface

Property Returns…

SpeechRecognitionError.error The type of error generated by the interface.

SpeechRecognitionError.

message

A message that provides more details about the

error.

APPENdIx API REfERENcE

316

 Methods
The SpeechRecognitionResult interface has a single method, detailed in

Table A-9.

Table A-8. Properties for the SpeechRecognitionResult interface

Property Purpose

SpeechRecognitionResult.

isfinal

A Boolean that states whether this result is final (true),

and returns the final result, or not (false), and returns

interim values. The latter value will be stored with an

expectation that this may be updated in the future.

SpeechRecognitionResult.

length

Returns the number of SpeechRecognitionAlternative

objects contained in the result.

Note: You may also see this referred to as “n-best

alternatives.”

Table A-9. Methods available in the SpeechRecognitionResult

interface

Method Purpose

SpeechRecognitionResult.

item

Allows the SpeechRecognitionAlternative objects within

the result to be accessed via an array syntax.

 API Reference:
SpeechRecognitionResultList
The SpeechRecognitionResultList interface represents a list of one

or more SpeechRecognitionResult objects, depending on whether the

results are being captured in continuous mode.

APPENdIx API REfERENcE

317

 Properties
The SpeechRecognitionResultList interface has just one read-only

property, which is listed in Table A-10.

Table A-10. Available properties for the SpeechRecognitionResultList

interface

Property Purpose

SpeechRecognitionResultList.

length

Returns the length of the “array” or number of

SpeechRecognitionResult objects in the list.

Table A-11. Methods available for the SpeechRecognitionResultList

interface

Property Purpose

SpeechRecognitionResultList.

item

Allows access to SpeechRecognitionResult objects

in the list, using a getter-based array syntax.

 Methods
The SpeechRecognitionResultList interface has a single read-only method,

which is listed in Table A-11.

 API Reference:
SpeechRecognitionAlternative
The SpeechRecognitionAlternative interface represents a single word

that has been recognized by the Speech Recognition API.

APPENdIx API REfERENcE

318

 Properties
This API Reference has just one read-only property, which is listed

in Table A-12.

Table A-12. Available properties for SpeechRecognitionAlternative

Property Purpose

SpeechRecognitionAlternative.

transcript

Returns a string value that represents the

transcript of recognized words; this will contain

leading or trailing whitespace, if continuous

recognition has been enabled.

SpeechRecognitionAlternative.

confidence

A numeric estimate of the level of confidence in

the accuracy of the recognized content.

 API Reference: SpeechSynthesis
The SpeechSynthesis interface manages the speech service and can be

used to retrieve information, such as the synthesis voices available on the

device, or to start and pause speech.

Many of the properties in the SpeechSynthesis interface are
inherited from its parent interface, EventTarget.

 API Interfaces
A list of the interfaces available for the Speech Synthesis API is detailed in

Table A-13.

APPENdIx API REfERENcE

319

 Properties
A list of the Boolean-based properties for the Speech Synthesis API is

displayed in Table A-14.

Table A-13. The interfaces available for the SpeechSynthesis API

Interface Purpose

SpeechSynthesis The controller interface that can be used to manage the

service or retrieve information such as the synthesis

voices available on the device.

SpeechSynthesisErrorEvent details any errors that appear while processing

SpeechSynthesisUtterance objects.

SpeechSynthesisEvent Manages the current state of

SpeechSynthesisUtterance objects that have been

processed in the speech service.

SpeechSynthesisUtterance Represents a speech request, with information about

the content that should be read and how to read it

(such as language, pitch, and volume.)

SpeechSynthesisVoice Represents each voice that the system supports; this

contains information such as language, name, and URI.

Window.speechSynthesis Provides access to the SpeechSynthesis controller and

entry point to speech synthesis functionality.

APPENdIx API REfERENcE

320

 Methods
There are five methods available within the Speech Synthesis API; these

are listed in Table A-15.

Table A-15. Methods available for use in the SpeechSynthesis API

Method Purpose of method

SpeechSynthesis.

cancel()

Removes all utterances from the utterance queue.

SpeechSynthesis.

getVoices()

Returns a list of SpeechSynthesisVoice objects that

represent the available voices on the current device.

SpeechSynthesis.

pause()

Puts the SpeechSynthesis object into a paused state.

SpeechSynthesis.

resume()

Allows the SpeechSynthesis object to resume its previous

state.

SpeechSynthesis.

speak()

Adds an utterance to the utterance queue, which will be

processed when utterances already queued have been

spoken.

Table A-14. A list of properties for the SpeechSynthesis API

Property Purpose of property

SpeechSynthesis.

paused

determines if the SpeechSynthesis object is in a paused

state.

SpeechSynthesis.

pending

determines if the utterance queue contains as-yet-unspoken

utterances.

SpeechSynthesis.

speaking

determines if an utterance is currently in the process of being

spoken; this includes instances where SpeechSynthesis is in

a paused state.

APPENdIx API REfERENcE

321

 Events
There is only one event we can use within the Speech Synthesis API –

details are listed in Table A-16.

Table A-16. Events available within the SpeechSynthesis API

Event Event is fired when/for…

voiceschanged/

onvoiceschanged

A change has been detected in the list of

SpeechSynthesisVoice objects that would be returned by the

SpeechSynthesis.getVoices()method.

Table A-17. Constructor for the SpeechSynthesisUtterance interface

Constructor Purpose

SpeechSynthesisUtterance.

SpeechSynthesisUtterance()

Returns a new instance of the

SpeechSynthesisUtterance object.

 API Reference: SpeechSynthesisUtterance
The SpeechSynthesisUtterance interface represents a speech request,

which can be used to read the content of the speech service or set

properties such as volume, pitch, and language.

Many of the properties in the SpeechSynthesisUtterance interface are
inherited from its parent interface, EventTarget.

 Constructor
There is only one constructor object for the SpeechSynthesisUtterance

object, which is listed in Table A-17.

APPENdIx API REfERENcE

322

 Properties
The interface for the SpeechSynthesisUtterance object contains several

properties we can use – these are detailed in Table A-18.

Table A-18. Properties available in the SpeechSynthesisUtterance

interface

Property Purpose – gets and sets…

SpeechSynthesisUtterance.lang The language of the utterance.

SpeechSynthesisUtterance.pitch/

SpeechSynthesisUtterance.rate/

SpeechSynthesisUtterance.volume

The pitch, rate, or volume of the spoken

utterance.

SpeechSynthesisUtterance.text The text that will be articulated when the

utterance is spoken.

SpeechSynthesisUtterance.voice The voice to be used when speaking the

utterance.

 Events
There are a handful of events we can use when working with an instance of

SpeechSynthesisUtterance – details are listed in Table A-19. These can be

triggered using addEventListener() or by assigning an event listener to

the oneventname property of this interface.

APPENdIx API REfERENcE

323

 API Reference: SpeechSynthesisErrorEvent
The SpeechSynthesisErrorEvent interface contains information about

any errors that occur while processing SpeechSynthesisUtterance objects.

 Properties
The interface for the SpeechSynthesisErrorEvent object contains just one

read-only property, which is listed in Table A-20.

Table A-19. Events available within the SpeechSynthesisUtterance

interface

Event name Fired when…

boundary The spoken utterance reaches a word or sentence boundary.

end The utterance has finished being spoken.

error An error occurs that prevents the utterance from being successfully

spoken.

mark The spoken utterance reaches a named Speech Synthesis Markup

Language (SSML) “mark” tag.

pause The utterance is paused partway through a text.

resume A paused utterance is resumed.

start The utterance has begun to be spoken.

Table A-20. Properties for the SpeechSynthesisErrorEvent interface

Property Purpose of property

SpeechSynthesisErrorEvent.

error

Returns an error code that indicates what has gone

wrong with a speech synthesis attempt.

APPENdIx API REfERENcE

324

 Methods
The SpeechSynthesisErrorEvent does not have any methods specific to

this interface; all methods are inherited from the SpeechSynthesisEvent

interface.

 API Reference: SpeechSynthesisEvent
The SpeechSynthesisEvent interface contains information about the

current state of SpeechSynthesisUtterance objects that have been

processed in the speech service.

Many of the properties in the SpeechSynthesisEvent interface are
inherited from its parent interface, EventTarget.

 Properties
The interface for the SpeechSynthesisEvent object contains several read-

only Boolean properties we can use – these are detailed in Table A-21.

APPENdIx API REfERENcE

325

 Methods
The SpeechSynthesisEvent inherits methods from its parent interface,

Event, so does not contain any methods specific to this interface.

 API Reference: SpeechSynthesisVoice
The SpeechSynthesisVoice interface represents a voice supported by the

system, along with details of its own speech service, such as language,

name, and URL.

Table A-21. Properties for the SpeechSynthesisEvent interface

Property Returns…

SpeechSynthesisEvent.

charIndex

An index position of the character in the

SpeechSynthesisUtterance.text that was being

spoken, at the time the event was triggered.

SpeechSynthesisEvent.

elapsedTime

Returns the elapsed time in milliseconds of the event

trigger point, after the SpeechSynthesisUtterance.

text started being spoken.

SpeechSynthesisEvent.

name

The name associated with certain types of events

occurring as the SpeechSynthesisUtterance.text

is being spoken: these include the SSML marker reached

if relating to a mark event or the type of boundary

reached.

SpeechSynthesisEvent.

utterance

Returns the SpeechSynthesisUtterance instance

that triggered the event.

APPENdIx API REfERENcE

326

 Properties
A complete list of (read-only) Boolean-based properties available for the

SpeechSynthesisVoice interface is detailed in Table A-22.

Table A-22. Properties available for the SpeechSynthesisVoice

interface

Property Returns…

SpeechSynthesisVoice.lang/

SpeechSynthesisVoice.name

A BcP47 language tag (and the equivalent

human-readable name), indicating the language

of the voice.

SpeechSynthesisVoice.default The voice is the default voice for the current app

language (true), or not (false)

SpeechSynthesisVoice.

localService

Indicates whether the voice is supplied by a local

or remote speech synthesizer service. The default

is true, for local speech synthesizer service.

SpeechSynthesisVoice.voiceURI The type of URI and location of the speech

synthesis service for this voice.

 API Reference: SpeechGrammar

future removal of the SpeechGrammar function:

There is an ongoing proposal (https://github.com/w3c/
speech-api/pull/58) to deprecate and remove this feature (and
SpeechGrammarList) from the Web Speech API specification.
details provided here are purely in the interests of transparency;
please refer to comments in chapter 2 for more details.

APPENdIx API REfERENcE

https://github.com/w3c/speech-api/pull/58
https://github.com/w3c/speech-api/pull/58

327

The SpeechGrammar interface represents a set of words or patterns of

words that we want the recognition service to recognize. A grammar object

is defined using the JSpeech Grammar Format (JSGF), although other

formats may also be supported in the future.

 Constructor
As with many JavaScript-based APIs, there is only one constructor

required – details are listed in Table A-23.

Table A-23. The constructor object for the SpeechGrammar interface

Constructor Purpose

SpeechGrammar.SpeechGrammar() creates a new SpeechGrammar object.

Table A-24. A list of properties available within SpeechGrammar

Property Sets and returns…

SpeechGrammar.src A string-based grammar that references the current instance

of the SpeechGrammar object.

SpeechGrammar.

weight

The weight of the SpeechGrammar object.

 Properties
There are two properties available within the SpeechGrammar interface –

these are detailed in Table A-24.

APPENdIx API REfERENcE

328

 API Reference: SpeechGrammarList
We can reference the contents of a SpeechGrammar object using the

SpeechGrammarList interface. This represents a list of SpeechGrammar

objects containing words or patterns of words that we want the recognition

service to recognize; it is normally available in the JSpeech Grammar

Format (JSGF).

 Constructor
There is a single constructor object available within SpeechGrammarList;

this is detailed in Table A-25.

Table A-25. The Constructor object for SpeechGrammarList

Constructor Purpose

SpeechGrammarList.

SpeechGrammarList()

creates a new SpeechGrammarList

object.

 Properties
The SpeechGrammarList interface has one property we can use, which is

detailed in Table A-26.

Table A-26. The sole property available within SpeechGrammarList

Property Returns…

SpeechGrammarList.

length

The number of SpeechGrammar objects contained in a

SpeechGrammarList object.

APPENdIx API REfERENcE

329

 Methods
We can make use of three methods within the SpeechGrammarList

interface, which are listed in Table A-27.

Table A-27. Methods available within the SpeechGrammar interface

Method Purpose of method

SpeechGrammarList.

item()

Allows individual SpeechGrammar objects to be

retrieved from the SpeechGrammarList using a getter-

based array syntax.

SpeechGrammarList.

addfromURI()

Adds a grammar to a SpeechGrammarList as a new

SpeechGrammar object, from a specific URL.

SpeechGrammarList.

addfromString()

Adds a grammar from a dOMString element (such

as a variable) to a SpeechGrammarList as a new

SpeechGrammar object.

APPENdIx API REfERENcE

331© Alex Libby 2020
A. Libby, Introducing the HTML5 Web Speech API,
https://doi.org/10.1007/978-1-4842-5735-7

Index

A
addEventListener(), 322
AJAX, 177
Alexa, building

architecting demo, 158, 159
count syllables in word, 186
demo

adding functionality,
162–164, 166–169

adding support for
languages, 178–183

annyang, 169–171
images adding, 174–176
improving performance,

183–185
loadVoices() function, 169
markup, setting up, 160, 161
microphone trigger, 172, 173
picture library, 177
#skitt-ui, 172
speak() function, 170
SpeechKITT GUI, 170, 172
SpeechSynthesis

Utterance(), 170
favorite food, finding, 186
features adding, 174–176
find nearest supermarket/

local store, 185

play local radio station, 185
Speech Recognition and

Synthesis, 158
Annyang library, 26, 158,

170, 178, 184
Application Programming

Interface (API)
browser support

fallback support, 24–26
progressive

enhancement, 25
Speech Recognition API, 24
SpeechSynthesis API, 23

languages support, 56
microphone, 3
secure HTTPS

environment, 2
ARIA-based accessibility

capabilities, 276
Authorization Code method, 238

B
Botpress, 99
botReady() function, 126
botReply(), 221
Bots, 93, 94
BotUI, 99
BrowserStack, 76

https://doi.org/10.1007/978-1-4842-5735-7

332

C
Chatbot

adding language support
botReady() function, 126
<button> tag, 124
chat language, 123
coding, 128, 129
demo updation, 122
French language

support, 127
language selectors, 123
multi-language support, 124
scripts.js file, 124
speak() function, 125
styles.css file, 126

alternative tools available, 99
benefits, library, 98
building, 92, 93
configuration

brain.rive file, 109, 110, 112
hard reload using

Chrome, 114
RiveScripts (see RiveScript)

contextual-based
conversation, 92

dependencies, 97
downsides to bots, 93, 94
functionality, setting up, 103–107
HTML markup, 115
multiple-language support, 120
parameters, 97
phrases, 120
Raspberry 4 board products, 97

Raspberry Pi 4 boards, 120
script.js, 115, 116
speech synthesis config, 121
tools, 101, 102
types, 94, 95

Checkout process
API, 297
catch() trap, 302
.complete() method, 302
fallback, Payment Request

API, 303
methodData constant, 301
method, payment in action, 297
payment request API, 298,

300, 301
window.PaymentRequest, 302

Chrome’s Responsive Mode
option, 76

Client Credentials
Flow method, 239

CodePen, 2, 5
CompressPNG.com, 278
Content Delivery Network

(CDN), 98
Conversational bots, 94, 95
cookieChosen variable, 295

D
dateNow function, 179
DayJS library, 140
Deezer, 235, 236
distanceaway variable, 214
DOM.ready() function, 266

Index

333

E
Error event handler, 46, 170
Event handler, 264, 271

clearbtn, 141
onerror, 140
onresult, 139
submitbtn, 140

F
Font Awesome, 278

G
getalbumsbyartist() object, 262
getRestaurants() function, 223
getUserMedia, 223
getVoices() method, 54
Google Assistant, 157
Google Fonts, 278
Google Maps, 194
Google Play Music, 235
Google’s neural AI

capabilities, 24

H
HTML5 Geolocation API, 220
HTML5 Speech API, 1

adding speech capabilities to
video, 47–51

alternative method, microphone
enabled, 20, 21

event handler, 52

microphone access, 17–20
navigator.getUserMedia(), 52
play and pause

commands, 46
recognition.interimResults, 22
recognition.

maxAlternatives, 22
security and privacy, 26–28
speechstart, 52
SpeechRecognition API (see

SpeechRecognition API)
SpeechSynthesis API (see

SpeechSynthesis API)
variables, 52
voice-controlled video

player, 47
window.Speech

Recognition, 22
HTML Geolocation API, 228
HTTPS-secured environment, 26

I
Implicit Flow authorization, 241
Implicit Grant Flow method, 239
Implicit Grant method, 238
Interfaces, SpeechRecognition

API, 310

J, K
JavaScript, 52, 87, 139, 171
jQuery, 159, 171, 278
JSON Editor Online, 231

Index

334

L
loadVoices() function, 11, 54, 88,

115, 169, 220
luxon.DateTime.local(), 88
Luxon time library, 159

M
maxAlternatives property, 40
Microphone

access, Speech API, 17–20
API, 12
enabled, alternative

method, 20, 21
Mobile devices

beneficial approach, 71
getting time demo, Speech

Synthesis API, 85–87
space available

Chrome’s responsive mode,
configuration, 75–77

setting, 75
viewport area, 74

Speech Recognition API
implementation, 82–85
support, 68–72
works, 89

Speech Synthesis API
implementation, 77–81
support, 66–68, 72–74

Mozilla Developer Network
(MDN), 13

Multilingual

custom language,
setting, 56–58

language and dialect, 61
languages support

API, 56
CodePen demos, 55
getVoices() method, 54
loadVoices() function, 54
SpeechSynthesis API, 54, 55

N
navigator.getUserMedia(), 52
navigator.mediaDevices.

getUserMedia(), 20, 22, 39,
42, 273

O
onerror event handler, 116, 170
onResult function, 139
onspeechend handler, 269
OpenWeatherMap, 159

P, Q
Payment Request API, 275, 297,

298, 300, 301, 303, 304
PiShack, 96
Pixabay, 159, 177, 184
playmusic() function, 264
pop() method, 295
Promise(), 304
Purchase process automation

Index

335

checking out (see Checkout
process)

credit cards, avoiding, 307
language support, 306
pitfalls, adding speech

capabilities, 304, 305
setting expectations, 280, 281
speech capabilities, adding

.add_to_cart class, 287
cookieChosen variable, 295
markup and styling,

microphone, 281
microphone markup, 282–284
.output_log, 294
product markup,

updating, 284–286
script functionality, 289,

290, 292–296
Speech Recognition API, 307

R
Raspberry Pi board, 189
Reading back text, 6–8, 10
recognition.interimResults, 22, 39
recognition.lang property, 305
recognition.maxAlternatives, 22
Request Payment API, 297
ResponsiveVoice, 25
Restaurant finding

adding in language support, 226
bot configuration file, 224
brain.rive configuration file, 224
business logic, 193

code dissecting
getRestaurants()

function, 223
HTML markup, 220
Speech Recognition

API, 223
Speech Synthesis API, 220

currency converter API, 194
details displaying, 230
error handling and system

messages, 225
Google Maps, 194
HTML markup and

styling, 195, 196
latitude and longitude

values, 225
location-based facilities,

adding, 228, 230
parameters setting, 190, 191
project initialization, 197, 198

adding speech capabilities,
199–201, 203

bot configuration, 211–213
currencies into US dollars

conversion, 214
displaying USD

conversion, 215
restaurant details,

getting, 204–207
speech input capabilities,

adding, 208–210
RiveScript, 194
SessionStorage API, 194
setting expectations, 192

Index

336

statements, bot
conversation, 225

telephone numbers, formatting,
227, 228

testing demo
accept input, 216
in action, 217
approach, 216
basic details,

restaurant, 219
Zomato, 193

result() handler, 266
Review feedback, Speech

Recognition API
adding in product page, 141, 143
architecture, 133
building review panel, 133–136
default language settings, 151
downsides, 152, 153
event handlers (see Event

handler)
French language as option,

147–150
HTML, 138
JavaScript, 139–141
language support, 145, 146,

148–151
merged review panel, 144, 145
onResult function, 139
review system, 137
scene setting, 131, 132
star rating, 154
update, 147–150

RiveScript, 100
bot framework, 211
brain.rive file, 118, 119
functions, 108, 224
library, 102, 107, 115
special characters types, 117

S
Screenless devices, 92
selfReply() functions, 221, 222
SessionStorage API, 194
.setLanguage command, 128,

 180, 182
Shopping cart, setting up, 279, 280
Smart assistant (SA) devices, 1, 157
speak() function, 12, 39, 88, 170,

182, 221
Speech button, 10
speechend, 223
speechend handlers, 271
SpeechGrammarList interface, 63

constructor object, 327, 328
methods, 329
property, 327, 328

SpeechKITT 158
GUI, 160, 170
web site, 171

SpeechRecognition object, 41
SpeechRecognitionAlternative

interface, 317, 318
SpeechRecognition API

API interface, 40
browser support, 24

Restaurant finding (cont.)

Index

337

CodePen, 5, 16
constructor object, 310
Edge, Firefox, and Chrome, 25
event handlers, 45
events, 313
feedback forms (see Review

feedback, Speech
Recognition API)

Firefox, 13
interfaces, 310
methods, 312
microphone access, 40
mobile device (see Mobile

devices)
properties, 41, 311
remote server-based

recognition engine, 40
settings, SpeechRecognition

object, 41
SpeechSynthesis demo, 34
SpeechSynthesis interface, 32, 40
SpeechSynthesisUtterance

object, properties, 33
speech to text conversion, 12–17
window.speechSynthesis.

speak(msg), 32
SpeechRecognition demo

additional properties, API, 42
automatically shutting off, 44
auto turn-off, speech

recognition engine, 43, 44
CodePen web site, 42
coding, 42, 46
configuration options, 45

error event handler, 43
error handling, 43, 45
error management features, 42
shutting off, microphone, 44
speechend event handler, 43
updated Speech Recognition

demo, 45
SpeechRecognitionErrorEvent

interface, 315
SpeechRecognitionEvent,

properties, 314
SpeechRecognition interface, 40
speechRecognition.

maxAlternatives
property, 140

SpeechRecognitionResult interface
methods, 316
properties, 316

SpeechRecognitionResultList
interface, 139

methods, 317
properties, 317

speechstart event handler, 39,
223, 295

SpeechSynthesis API
boolean-based properties,

319, 320
browser support, 23
events, 321
Google’s neural AI

capabilities, 24
HTML markup and styling, 11
interfaces, 319
Internet explorer, 25

Index

338

languages support, 54
loadVoices(), 11
methods, 320
mobile device, 66
reading back text, 5–11
speak() function, 12
speechSynthesis.getVoices()

function, 12
SpeechSynthesisUtterance(), 12

SpeechSynthesis demo, 34
block of code, 35
buttons and range controls, 37
CodePen, 35
control levels, 34
event handlers, 38, 39
onvoiceschanged event

handler, 37
pause and resume spoken

content, 39
resume button, 38
speak() function, 37
speaking French languages,

58–60
#voice style rule, 36
volumeInput, rateInput, and

pitchInput, 39
volume, rate, and pitch, 37

SpeechSynthesisErrorEvent
interface

methods, 324
properties, 323

SpeechSynthesisEvent interface
methods, 325

properties, 325
speechSynthesis.getVoices()

function, 12
SpeechSynthesis interface, 32
speechSynthesis.speak(msg)

statement, 116
SpeechSynthesisUtterance(), 12,

32, 170
SpeechSynthesisUtterance

interface, 221
constructor object, 321
events, 322, 323
properties, 322

SpeechSynthesisUtterance
object, 33

SpeechSynthesisVoice
interface, 326

Speech to text conversion, 12–17
Spotify API, 236, 237

authorization framework set up,
247–250

authorizing access
basic Vue object, 251
configuration functions, 252
constraints, 242
flow operates, 241
Implicit Grant Flow

method, 239
initial login button, 253
methods, 238, 239
object to add, 253
partial request, 254

control using our voice, 234
demo

SpeechSynthesis API (cont.)

Index

339

jQuery, 238
Vue.js, 237
wrapper library, 237

features, 234
interface improvement, 272, 273
interimResults,

maxAlternatives, and
continuous properties, 271

login() object, 256
mounted(), 256
onspeechend, 271
setting up prerequisites, 243–246
Speech APIs, 272
speech capabilities, 266, 267,

269, 270
SpeechRecognition, 271
speechstart event, 271
spotify-web-api library, 256
streaming content (see

Streaming content, Spotify)
voice control, enabled, 266

SpotifyAPI wrapper instance, 264
Streaming content, Spotify

demo
client ID and client

Secretsvalues, 258
coding, 264, 265
displaying album details, 258
getalbumsbyartist() object,

262
helper function, 258
index.html file, 257
login() object, 258

pausemusic() function, 260
play() function, 259
playprevioustrack()

object, 261
retrieve, list of albums, 262
</script> tag, 263

SynthesisUtterance, 116

T
Text-to-speech demo, 10
Transactional bots, 94, 95

U
updateCountry() function, 61

V
Vue.js, 237
Vue object, 255

W, X, Y
weather() function, 179
Web Speech APIs, 98, 115, 116
window.SpeechRecognition, 22
window.SpeechSynthesis

interface, 116
Wit.ai, 99

Z
Zomato API, 195

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Started
	Introducing the APIs
	Setting up our development environment
	Implementing our first examples
	Reading back text as speech
	Understanding what happened

	Converting speech to text
	Allowing access to the microphone
	Setting access: An alternative method
	Breaking apart our code

	Allowing for browser support
	Providing fallback support

	Understanding security concerns

	Summary

	Chapter 2: Exploring the APIs in More Detail
	Understanding the API terminology
	Exploring the Speech Synthesis API
	Breaking apart the API

	Improving our SpeechSynthesis demo
	Dissecting our code

	Exploring the Speech Recognition API
	Breaking apart the API

	Updating our SpeechRecognition demo
	Understanding the code

	Creating a more practical example
	Exploring the code in detail

	Going multilingual
	Exploring support for languages
	Setting a custom language
	Breaking apart our code
	The difference between language and dialect

	Making use of grammar objects
	Summary

	Chapter 3: Supporting Mobile Devices
	Supporting the Speech Synthesis API
	Breaking down the numbers

	Supporting the Speech Recognition API
	Understanding the numbers
	A couple of prerequisites

	Checking support for the APIs
	Determining space available
	Setting available space using code
	Configuring Chrome’s Responsive Mode

	Implementing the Speech Synthesis API
	Adapting design for mobile

	Implementing the Speech Recognition API
	Adapting for mobile use

	Putting it together: A practical example
	Dissecting the code in detail

	Working with mobile: An epilog
	Summary

	Chapter 4: Combining the APIs: Building a Chatbot
	Why use a chatbot?
	Things to consider when building a chatbot
	Downsides to bots

	Different types of chatbots
	Setting the background
	Keeping things in scope

	Architecting our demo
	Alternative tools available

	Adding text editor support
	Getting tools in place
	Building our chatbot
	Configuring our chatbot

	Exploring the code in detail
	Dissecting our HTML markup
	Pulling apart script.js: The Web Speech API

	Understanding how our bot is configured
	Exploring how RiveScript works: A summary
	Dissecting the brain.rive file in detail

	Taking things further
	Adding language support
	Updating our demo
	Dissecting the code

	Summary

	Chapter 5: Project: Leaving Review Feedback
	Setting the scene
	Keeping things in scope

	Architecting our demo
	Building our review panel
	Breaking apart the code in detail
	Exploring the HTML
	Exploring the JavaScript

	Adding it to a product page
	Adding language support
	Updating the demo
	Dissecting the code

	Leaving reviews: A postscript
	Taking things further
	Summary

	Chapter 6: Project: Building Alexa
	Setting the scene
	Architecting our demo
	Building our demo
	Creating the markup
	Making our demo come to life

	Breaking apart the code
	Solving a styling problem

	Adding new features
	Exploring the code in detail

	Adding support for different languages
	Breaking down the code

	Improving performance
	Taking things further
	Summary

	Chapter 7: Project: Finding a Restaurant
	Setting the scene
	Setting the parameters of our project
	Setting expectations
	Determining the business logic
	Architecting our project
	Setting up the initial markup and styling
	Initializing our project
	Making our bot talk
	Getting the restaurant details
	Adding speech input capabilities
	Configuring the bot
	Converting currencies into US dollars

	Testing the demo
	Dissecting our code in detail
	Dissecting our HTML markup
	Breaking apart the main script file
	The Speech Synthesis API and our bot
	Fetching the restaurant data
	Usage of the Speech Recognition API

	Exploring the bot configuration file

	Taking things further
	Formatting telephone numbers
	Adding location-based facilities
	Displaying more details about restaurants

	Summary

	Chapter 8: Project: Finding and Playing Music
	Setting the background to our project
	Why Spotify?
	Architecting our demo
	Authorizing our demo
	Choosing a method
	The implications of using our chosen method
	Constraints of using this method

	Setting up prerequisites
	Creating the framework
	Getting authorization from Spotify
	Breaking apart the code

	Streaming content from Spotify
	Understanding the code

	Talking to Spotify
	Exploring the code in detail

	Taking things further
	Summary

	Chapter 9: Project: Automating the Purchase Process
	Setting the scene
	Keeping things in scope
	Architecting the project
	Preparing our shopping cart
	Setting expectations
	Adding speech capabilities
	Inserting the markup for our microphone
	Altering our product markup
	Dissecting the code

	Adding the script functionality
	Breaking apart our code

	An alternative method of checking out
	Breaking apart the code
	Reducing the functionality: A note

	Exploring the pitfalls of our solution
	Taking things further
	Summary

	Appendix:API Reference
	API Reference: SpeechRecognition
	API Interfaces
	Constructor
	Properties
	Methods
	Events

	API Reference: SpeechRecognitionEvent
	Properties

	API Reference: SpeechRecognitionError
	Properties

	API Reference: SpeechRecognitionResult
	Properties
	Methods

	API Reference: SpeechRecognitionResultList
	Properties
	Methods

	API Reference: SpeechRecognitionAlternative
	Properties

	API Reference: SpeechSynthesis
	API Interfaces
	Properties
	Methods
	Events

	API Reference: SpeechSynthesisUtterance
	Constructor
	Properties
	Events

	API Reference: SpeechSynthesisErrorEvent
	Properties
	Methods

	API Reference: SpeechSynthesisEvent
	Properties
	Methods

	API Reference: SpeechSynthesisVoice
	Properties

	API Reference: SpeechGrammar
	Constructor
	Properties

	API Reference: SpeechGrammarList
	Constructor
	Properties
	Methods

	Index

